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ABSTRACT

This thesis investigates the application of Wiener filtering and wavelet

techniques for the removal of noise from underwater acoustic signals. Both FIR and

IIR Wiener filters are applied in separate methods which involve the filtering of

Wavelet coefficients which have been produced through a discrete wavelet

decomposition of the acoustic signal. The effectiveness of the noise removal

methods is evaluated by applying them to simulated data. The combined Wiener

wavelet filtering methods are compared to more traditional denoising techniques

which include Wiener filtering and wavelet thresholding methods.
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I. INTRODUCTION

Accurate analysis of ocean acoustic signals has proven to be a difficult task due to

unwanted noise which is usually present. Significant effort has been directed to the problem

of noise removal from underwater acoustic signals. In the 1940s, Norbert Wiener conducted

extensive research in the area of linear minimum mean-square error (MMSE) filtering.

Provided the spectral characteristics of an additive combination of signal and noise are

known, the Wiener filter will operate in a linear manner to yield the best separation of the

signal from the noise. Here, "best" means minimum mean-square error. The Wiener filter

is today a well tested method of noise reduction.

Wavelet techniques are, conversely, a more modern approach to noise reduction,

although their origin lies in the timeless methods developed by Fourier. Wavelet analysis

decomposes the signal into a family of basis functions and provides two significant

advantages over the traditional Fourier analysis. First, in wavelet analysis there is a wide

variety of basis functions to choose from, and second, a multi-resolution capability is

provided in the time-frequency domain which is critical to the identification and elimination

of noise in a non-stationary environment. Wavelet techniques have proven to be a viable tool

for the denoising of acoustic signals.

Recently, a question has been posed concerning the combination of these two

invaluable techniques. The approach presented applies a discrete wavelet transform to the

noisy signal. Next, rather than thresholding the wavelet coefficients, a Wiener filter is

applied to separate the noise from the signal. While this approach may intuitively seem



reasonable, there are problems associated with aliasing and perfect reconstruction of the

denoised signal which must be considered. Given that the aliasing problem can be dealt

with, the results still may not be superior to either Wiener filtering alone or wavelet-based

techniques alone but the possibilities are certainly worthy of investigation.

In this thesis, an approach is presented which combines the Wiener filter, in both the

causal finite impulse response (FIR) and the non-causal infinite impulse response (DR)

forms, with wavelet-based techniques. The various noise removal methods are applied to

simulated data which offers the advantage of providing ground truth to the analysis.

Additionally, the signal-to-noise ratio (SNR) level can be easily modified to evaluate the

effectiveness of the denoising algorithms. The combined Wiener wavelet based denoising

methods demonstrate promise in the recovery of ocean acoustic signals from the noisy ocean

environment in which ships operate.

The problem of denoising underwater acoustic signals is addressed in nine additional

chapters summarized as follows. Chapter II presents background information on the

characteristics of ocean acoustic noise . In Chapter EI the theory and application of Wiener

filtering methods is discussed. Chapter IV presents the theoretical development of wavelet

analysis and and mutirate systems. Standard wavelet threshold based denoising techniques

are presented in Chapter V. FIR Wiener wavelet noise removal methods are developed in

Chapter VI followed by HR Wiener wavelet methods in Chapter VII. A comparison of the

various denoising methods is presented in Chapter VIQ. Wavelet packet denoising

techniques are applied to the problem of high frequency signals of short duration in Chapter

DC. Finally, conclusions are presented in Chapter X.



II. OCEAN ACOUSTIC NOISE

Though significant resources have been devoted to non-acoustic detection methods

in the undersea warfare environment, sonar remains the primary and most reliable method

of detection. However, as modern technology continues to enable significant reduction in

radiated source levels the problem of early detection and classification of underwater

acoustic signals gains greater significance. A possible solution lies in the area of improved

digital signal processing and filtering methods which would allow detection and

classification of signals at lower signal-to-noise ratios. The passive sonar equation states that

the source level of the target minus the loss due to propagation through the medium, minus

the sum of all interfering noises plus improvement by the spatial processing gain of the

receiver, must be greater than the detection threshold for a sonar system to sense the presence

of a target with a fifty percent probability of detection [1]

SL-TL>NL-DI + DT, (2.1)

where: SL = Source Level of the target being detected passively

TL = Transmission Loss as the signal propagates to the detector

NL = Noise Spectrum Level of the ambient noise and self noise in the ocean

DI = Directivity of the detecting system

DT = Detection threshold for 50% probability of detection

and all terms are in dB referenced to luPa.

A reduction in the noise spectrum level would certainly result in an improved

detection probability. The noise spectrum level includes both self noise and ambient noise.



A. NOISE SOURCES

1. Ambient Noise

Urick identifies ambient noise as that part of the total noise background observed

with a nondirectional hydrophone which is not due to that hydrophone and its manner of

mounting called "self-noise", or to some identifiable localized noise source [2]. Ambient

noise is produced by a variety of sources and may be found in the frequency range from 1

Hz to 100 KHz. The noise frequency range is typically divided into five frequency bands of

interest, which are discussed next.

a. Ultra-Low Band (<1 Hz)

Though little is known about the exact contributors at the lower end of the

spectrum, it is surmised that these sources include tides and hydrostatic effects of waves,

seismic disturbances, and oceanic turbulence [3]. Tides and waves cause hydrostatic

pressure changes resulting in a low frequency, high amplitude contribution to the ambient

noise spectrum. The constant seismic activity measured on land extends into the ocean

environment causing low frequency, high amplitude contributions which add to those

produced by tides and waves. Oceanic turbulence gives rise to varying dynamic pressures

which are detected by pressure sensitive hydrophones.

b. Infrasonic Band (1 to 20 Hz)

This band has gained importance with the emergence of improved low

frequency narrowband passive sonar systems. It contains the strong blade-rate fundamental

frequency of propeller-driven vessels and its accompanying harmonics. A steep negative



spectral slope of 10 dB per octave is common in the region from 1 to 5 Hz. This slope goes

positive from 5 to 20 Hz as shipping noise begins to become a more significant factor. In the

absence of ship traffic this region continues to fall off and is more affected by wind speed.

c. Low Sonic Band (20 to 200 Hz)

Studies have shown that distant ship traffic is the dominant source of noise

at 100 Hz and has a significant effect in the low sonic band [3]. In areas of low shipping

intensity, wind speed continues to be the major factor just as it is in the infrasonic and high

sonic bands. Thus, an area of heavy shipping such as the North Atlantic, where on average

1,100 ships are underway, will see a much greater effect than less traveled areas such as the

South Pacific.

d. High Sonic Band (200 to 50,000 Hz)

The well known acoustician V.O. Knudsen conducted extensive studies in this

band during World War II. In these studies, he was able to correlate noise with wind speed

in the frequency range 500 Hz to 25 KHz. His results, published in 1948, are best

summarized by the curves shown in Figure 2.1. These curves show a clear relationship

between wind speed (or sea state which isn't measured as accurately) and spectrum levels.

Subsequent studies have shown the spectrum to be flatter in the range 200 to 800 Hz but

have generally confirmed Knudsen's results [4]. Crouch and Burt [5] have developed an

expression to model the noise spectrum level in dB which is given as

NL(f) = B(f) + 20 n\ogw V, (2.2)

where NL is the noise spectrum level in dB referenced to 1 uPa at frequency/, B(f) is the



noise level at a wind speed of 1 knot at a particular frequency, n is an empirical coefficient,
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and V is the wind speed in knots. For n = 1 the noise level increases as 20 log 10 V, and the

noise intensity will increase as the square of the wind speed.

e. Ultrasonic Band (> 50,000 Hz)

At frequencies above 50,000 Hz thermal noise becomes the predominant

contributor to the noise background. In 1952 Mellen [7] showed theoretically that the

thermal noise of the molecules of the sea affects hydrophones and places a limit on their

sensitivity at high frequencies. Based on principles of classical statistical mechanics he

formulated the following expression for the spectrum level NL in dB referenced to 1 uPa of



the thermal noise at frequency/ in kHz given by

NL(f) = *15 + 20 lo&o/ (2.3)

Though measurements have been recorded in this band they have not

conclusively substantiated the above expression due to excessive shipping noise in nearby

ports. No measurements in this band in deep, quiet open ocean water appear to have been

made until now.

2. Self Noise

Self noise includes all noise created by the receiving platform and usually falls into

one of two categories which include equipment noise and platform noise. Equipment noise

includes electronic or thermal noise produced within the sonar electronic system. Platform

noise is produced from the same sources as radiated noise except that the source of platform

noise is the receiving platform vice the source or target platform. These sources include

machinery noise, hydrodynamic noise, propeller noise and transients. Platform noise reaches

the receiving transducer by a variety of methods including vibration via an all-hull path, all-

water direct path, all-water back scattered path from volume scatterers, and all-water bottom

reflected path [2]. Machinery noise occurs principally as low frequency tonals which are

relatively independent of speed. Hydrodynamic noise which includes all sources of noise

resulting from the flow of water past the hydrophone and its support and the outer hull

structure of the vessel, becomes more significant as speed increases. At high speeds

propeller noise becomes the dominant contributor to self noise.



B. TRANSMISSION LOSS AND WATER MASS CHARACTERISTICS

Properties of the water mass such as temperature, salinity, and density affect the

transmission path of sound in water and therefore alter the signal received at the hydrophone.

Additionally, the depth of water and bottom structure influence the path traveled and could

result in multiple transmission paths between the source and receiver. The affects of

absorption and attenuation cause the ocean to filter out the high frequency spectrum while

passing the low frequency spectrum. Thus, ocean acoustic noise appears to occur more

predominantly in the lower frequency region.

C. NOISE MODEL

Modeling ocean acoustic noise as a stationary white Gaussian random process

substantially simplifies the analysis and study of denoising. However, the variety of sources

which contribute to self and ambient noise and the acoustic transmission characteristics of

the ocean result in a noise contribution which is colored vice white in nature. A common

method around this obstacle is to pre-whiten the acoustic signal.

Stationarity is another assumption which must be applied carefully. Certainly the

ocean environment is one in which sources of acoustic signals change regularly. Moreover,

the water mass properties are in a constant state of flux. This hardly meets the criterion for

stationarity at first glance. However, on a time scale of several seconds, the ocean

environment can indeed be considered stationary.

Finally, evaluation of ocean acoustic noise reveals that the assumption of a Gaussian

random process appears to hold true in most cases. An artificial computer generated white



Gaussian noise sample and its power spectral density are pictured in Figure 2.2. This

assumption can be proved by comparing the histogram of a noise sample to the Gaussian

probability density function with appropriate sample mean and variance or by checking a

normal probability distribution plot of the noise sample as seen in Figure 2.3. Barsanti's

results have verified this assumption with many actual ocean acoustic signals [8]. Frack

discusses several more involved methods of verifying this critical modeling assumption [9].

All noisy signals in this thesis are generated by adding white Gaussian noise with

zero mean (as shown in Figure 2.2) to the noise-free signal. When analyzing actual ocean

acoustic signals a noise sample must be available to determine the statistical properties

necessary to produce optimal filtering. A noise sample with statistical properties which

accurately reflect the noise embedded in the noisy signal produces a more effective filter and

a more accurate denoised signal. Frack discusses methods which can be used to model noise

for filtering purposes when adequate noise samples are not available [9].
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III. WIENER FILTERING

Wiener filtering is one of the earliest methods used to separate noise from a desired

signal. Developed by Norbert Wiener in the 1940's, this form of optimal filtering is used to

denoise ocean acoustic signals with the objective of improving signal detection and

classification. The FIR Wiener filter and its application to denoising is developed in this

chapter.

A. MODEL DESCRIPTION

The optimum linear discrete-time estimation model is illustrated below in Figure 3.1.

The filter input signal x(n), consists of a signal s(n) and an additive noise win). The

estimator is constrained to be a linear filter with impulse response h(n), which is designed

to remove the noise while preserving the characteristics of the signal. The filter impulse

response is obtained by minimizing the estimation error e(n), defined as the difference

between the filter output and the desired signal d(n), which is taken as the original signal

s(n), for filtering applications.

Signal /^-^v Input
Linear

Discrete-Time

Filter

h(n)

Desired
Output ^^ Response

s(n)
+

+Vi(n) = s(n) + w(n) y(n) = s(n) " i + d(n) = s(n)

Noise

w(n)

\
Estimation

Error

e(n) = s(n) - s*(n)

Figure 3.1: Linear Discrete-Time Estimation Model.
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A time-varying filter can be derived for nonstationary signals but the complications

are significant [10]. A more tractable approach involves segmenting the input signal into

blocks which can be considered stationary for the short duration of a few milliseconds to a

few seconds. In developing the filter for this model, the input signal and noise spectral

characteristics or equivalently, auto- and cross-correlation functions must be known.

Although typically not known a priori, this information can be estimated from the data

assuming that the noise can be isolated sometime during the observation interval.

B. FIR WIENER FILTER DEVELOPMENT

Given the spectral characteristics of an additive combination of signal and noise,

Wiener proposed a scheme which best separates signal from the noise [11]. His procedure

involves solving for the "best" filter coefficients by minimizing the difference between the

desired ideal noise-free signal and the filter output in a mean square error sense. The mean

square error is most often used due to its mathematical simplicity, as it leads to a second

order cost function with a unique minimum obtained by using optimal filter coefficients [10].

The FIR Wiener filter is constrained to length P with coefficients hk (0 < k < P-\).

Its output depends on the finite input data record x(n) = [x(n), x(n-\), x(n-P+\)]
T
and may

be expressed as the convolutional sum:

p-\

s(n)=y(n) =5> *(*)*(«-£). (3.1)

The mean square value of the error, e{n), between the desired output s(n), and the filter

output s(n), can then be expressed as:

p-\

o\ =E{ \e(n)\
2

} =E{ \s(n) -£ h *(k)x(n -k)\
2

} . (3.2)

*=o

12



The principle of orthogonality states that the optimal filter coefficients h(n), for n = 0,1,...,

P-\, minimize the mean square error if chosen such that E{x(n-i) e\n)} = 0, for i = 0,1,...,

P-l, that is if the error is orthogonal to the observations [12]. The minimum mean square

error can then be given by o2

£
= E{s(n) e\ri)}. Now applying the orthogonality principle

results in the following set of equations:

E{x{n-i)e *{ri)}=E*

(

x{n-i)

p-\

s*(n)-Y,h(k)x\n-k)
k=0 I )

' = 0, for* = 0,l,...,P-l. (3.3)

Equation (3.3) can also be expressed in terms of the auto-correlation function of the

observations Rx (k) and the cross-correlation function between the signal and the observation

sequence Rsx(i) which leads to:

p-\

^R^k-DKk) = R
sx

*(i), for* = 0,l,...,/M. (3.4)

lc=0

Assuming the signal and noise are independent and have a zero mean, it can be shown that:

R
sx
(k)=R

s
(k) (3.5)

and R
x
(k)=R

s
(k)+Rw(k),

where R
s
(k) and Rw(k) are the signal and noise correlation functions respectively.

The set of discrete Wiener-Hopf equations for the causal stationary filter can be

expressed in matrix form as

(3.6)

where

and

*** = '«•

R
x

= E{x(n)x*T(n)}

r
sx

= E{s(n)x(n)}

(3.7)

(3.8)

and "~" represents the reversal operator applied to a vector [12]. Equation (3.6) may be

13



solved for the filter coefficients using matrix methods. The minimum mean square error is

found using the second part of the orthogonality theorem:

ot = E{s(n)e\n)} = E< s(n)

p-\

s *(n)~Ylh *(k)x(n-k)

A:=0 / J

or again in terms of the correlation function:

p-i

°l = R
s
(0)-Y,h\k)RJk).

fc=0

(3.9)

(3.10)

The Wiener filter is now applied to a synthetically generated noisy sinusoidal signal

of varying frequency with a SNR of dB. The original signal and noisy signal, shown in

Figure 3.2(a), are compared to the original signal and denoised signal in Figure 3.2(b). The

standard measure used to compare denoised signals to the noise free original signal is a

modified Mean Squared Error (MSE), defined as:

N

MSE = ]T
n = \

s(n) y(n)

normis) normiy)
(3.11)

where s{n) is the noise free original signal, y(n) is the denoised output, and N is the length

of the signal. The signals are energy normalized by dividing by their norms. This represents

a denoised signal amplitude gain which is applied to account for losses incurred during the

filtering process. This normalized MSE will be used throughout the thesis as a measure of

performance. It is not normalized by the signal length. However, a standard signal length

of 1024 or 16384 points is used exclusively for all denoising trials. The Wiener filtering

results for various filter orders is depicted in Figures 3.3 and 3.4. A single-frequency noisy

sinusoidal signal ( dB SNR) is denoised through ten trials and an average normalized MSE

14



is computed. This is repeated for test signals with normalized frequencies which range from

0.01 to 0.49 in steps of 0.01 and the results are displayed. The noise sample supplied to the

Wiener filter is an independent noise sample in Figure 3.3 and the original noise sample used

to create the noisy sinusoidal signal in Figure 3.4. Although the original noise sample is not

practically available, it is shown for comparison purposes. A table comparing the MSE

values averaged across the spectrum is shown following the Figures. The MSE performance

improves for higher filter orders. Additionally, the MSE value is rather flat across the

spectrum for a filter orders higher than four. These results are as expected for the Wiener

filter and provide a benchmark standard of performance against which other denoising

methods can be compared.

15



Original Signal and Noisy Signal: SNR = OdB, Normalized Freq = O.I

3
Original Signal and Wiener Filtered Signal: F Iter Order =12
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Figure 3.2: Wiener Filter (a) Original (dashed) and Noisy Sinusoidal Signal at normalized

frequency=0. 1 , sampling frequency=l. (b) Original (dashed) and filtered signal.
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Wienr Filter Results: SNR = OdB
O.S

0.45

0.05 O.I 0.15 0.2 0.25 0.3 0.35 0.4
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Figure 3.3: Mean-square error comparison for Wiener filters of various order.

Independent noise sample. Ten trial average.
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Wiener Filter Results SfSIR — OdB

0.3S —

S^

Figure 3.4: Mean-square error comparison for Wiener filters of various order. Actual

noise sample. Ten trial average.

Wiener

Filter Order
Actual Noise

Average MSE
Independent Noise

Average MSE

4 0.3400 0.3423

8 0.2078 0.2167

12 0.1500 0.1647

20 0.0977 0.1275

30 0.0711 0.1200
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IV. WAVELET ANALYSIS AND MULTIRATE SYSTEMS

Wavelet analysis has found a myriad of applications in areas ranging from financial

research to engineering analysis. It is particularly well suited for signal processing

applications such as image compression, sound enhancement, and statistical analysis [13].

This chapter presents the underlying theory of wavelet analysis including both the

mathematical basis, which stems from Fourier analysis, and the multirate implementation in

filter banks.

A. FOURIER ANALYSIS

Fourier and wavelet analysis are similar in that the goal is to express an observed real

time-series signal, x(t), as a linear decomposition of the form

x(t) = J>* €
t0), (4.1)

where k is an integer index for the finite or infinite sum, ak are real-valued expansion

coefficients, and ek(t) are a set of functions called the expansion set [14]. If an appropriate

expansion set is chosen, the resulting expansion coefficients will provide useful information

about the signal allowing better analysis and processing. The expansion set is called a basis

for the signal space if every signal in that space can be expressed as a unique set of linearly

independent functions. Further, if the basis functions are orthogonal so that their inner

product is zero:

<e.(r), e,(r)> = fep)e'k (t)dt = 0, j*k (4.2)

then the coefficients can be calculated by the inner product

19



a
k

= (x(t),e
k
(t)) = Jx(t)el(t)dt. (4.3)

In addition to simplifying the computation of the expansion coefficients, an expansion

utilizing an orthogonal basis function results in a sparse representation where most of the

coefficients are zero or near zero. This has great utility in the nonlinear noise reduction

methods developed in later chapters.

A well known transform which is used to extract spectral information from time-

series signals is the Fourier transform,

CO

Xif) = fx(t)e-2jnft dt. (4.4)

-oo

which uses orthogonal sinusoidal basis functions contained in the complex exponential

function. Since the Fourier transform is integrated over all time, it is only suitable for

stationary signals which have no time varying frequencies. However, most real-world signals

are non-stationary, and therefore, a time-varying spectral representation is essential in

conceptualizing the temporal relationship between the spectral components.

The short-time Fourier transform (STFT) is the key to adapting the Fourier transform

to time-frequency analysis. Let x(t) be the nonstationary signal of interest. A temporal

window, vv(r-x), is applied to the signal. The window, which is centered at t, segments the

signal into short intervals which can be considered stationary. The traditional Fourier

transform is then applied to the windowed signal. Thus, the STFT may be expressed as

follows:

oo

STFT(x,f)= f x(t) w(t-x) exp(-j2nft)dt. (4.5)

—oo

As a result, the STFT maps a one-dimensional time series into a two-dimensional
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time-frequency function STFT(x,f). Equation (4.5) can be considered the inner (scalar)

product of the signal Jt(t) with a two parameter family of basis functions w(t-x) exp(-j27i/f)

for varying x and/ [15]. The squared modulus of the short-term Fourier transform of a

signal is known as a spectrogram and is expressed as SPEC(x/ ) = I STFT(t/ ) 1

2
. The

spectrogram is a measure of the signal energy in the time-frequency plane and provides

powerful insight when analyzing nonstationary signals. A common band-pass filter

implementation of the STFT is shown in Figure 4.1. In this model, the frequency / might

be considered the midband frequency of the bandpass filter. This model results in a filter

bank setup with a set of analysis filters that perform a STFT for each specific value of

frequency / [15].

Band-pass Filter

x(t)
w(-t)exp(j2nft)

f=nf n=(l,2,..)

_ sxrrco

*vy *

T
exp( -j2*ft)

Figure 4.1: Band-pass Filter Implementation of STFT.

In terms of time and frequency resolution the STFT must satisfy the time-bandwidth

limitations of the uncertainty principle, namely:

ArA/ > — (4.6)
4tt
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where Af is the time resolution and A/ is the frequency resolution or bandwidth. This

equality can be met by using a Gaussian window [16]. However, once the window is

specified a constant bandwidth filter bank results with fixed time-frequency resolution over

the entire time-frequency plane. The time-frequency plane has a uniform tiling as

shown in Figure 4.2. Although the Gaussian window minimizes the time-bandwidth product,

the STFT still doesn't provide sufficient time resolution without a significant degradation

in frequency resolution. A narrow or compactly supported window function provides better

time resolution at the expense of poorer frequency resolution. Similarly, a wider window

function results in better frequency resolution but poorer time resolution. An alternative

approach to the STFT is required, one which analyzes the signal at different frequencies with

different resolutions.

B. THE CONTINUOUS WAVELET TRANSFORM

The wavelet transform is a multi-resolution analysis (MRA) method designed to

STFT Time-Frequency Display

£3
a

£2

12 3 4 5

Time (A t)

Figure 4.2: STFT Time-Frequency Display.
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provide good time resolution and poor frequency resolution at high frequencies and good

frequency resolution and poor time resolution at low frequencies. Fortunately, many

practical ocean acoustic signals are composed of high frequency components of short

duration plus low frequency components of long duration, and thus are well suited to this

form of analysis [17]. In terms of the filter bank model described earlier, the time resolution

must increase as the central frequency of the analysis filters increases. The filterbank is then

composed of band-pass filters with constant relative bandwidth otherwise known as constant-

(4.7)

Q filters where the constant relative bandwidth is defined as:

Af—- = constant - Q.
f

A clearer understanding may be obtained by comparing the division of the frequency

domain, as shown in Figure 4.3 below. The STFT analysis filters in Figure 4.3(a) are

regularly spaced over the frequency axis while WT multi-resolution analysis filters in Figure

STFT with Constant Bandwidth Filters

"O

E
<

Figure 4.3(a): STFT decomposition with Constant Bandwidth Filters.
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WTF with Constant-Q Factor Filters

a.

E
<

f„ 2fB 4f„ 8fn

Frequency

Figure 4.3(b): WT decomposition with Constant-Q Factor Filters.

4.3(b) are regularly spread in a logarithmic scale. The improved frequency resolution at low

frequencies and better time resolution at higher frequencies is clearly illustrated for the WT

case.

The continuous wavelet transform (CWT) is a powerful multi-resolution analysis

method which has become a widely used alternative to the STFT. It may be viewed as a

signal decomposition onto a set of basis functions where the basis functions are called

wavelets [15]. The CWT has some similarities to the STFT in that a segmented time-domain

signal is transformed by multiplying it by a wavelet function which is similar to a windowed

function in the STFT. However, the basis functions for the two transforms are quite

Figure 4.4: Basis Functions - Sine Wave and Daubechies-8

Wavelet.
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different. Whereas, the Fourier transform breaks the signal into a series of sine waves of

different frequencies, the wavelet transform breaks the signal into its "wavelets", scaled and

shifted versions of the "mother wavelet".

The two basis functions are illustrated in Figure 4.4, where a sine wave and a

Daubechies-8 wavelet are compared. The smooth sine wave of finite length is a direct

contrast to the wavelet which is irregular in shape. Its irregular shape improves the analysis

of signals with discontinuities or sharp changes, while its compact support allows temporal

localization of a signal's features [18].

The two-parameter family of basis functions known as wavelets may be expressed

' t-x N

V a
)

(4.8)as: !jjTa (r) =— i|;

where a is a scale factor or dilation parameter and t is a time delay. This leads to the

definition of the CWT:

dt. (4.9)CWT
x
(x,a) =— [ xm*

fa L a

In contrast to the Short Time Fourier transform, the CWT offers improved frequency

resolution at low frequency while the time resolution is improved at higher frequency.

Figure 4.5 illustrates the time-frequency plane for the CWT. The wavelet coefficients,

determined by the translation and dilation operations shown in Equation (4.8), represent the
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A Wavelet Time-Frequency Display

L>
Time (A t)

Figure 4.5: CWT Time-Frequency Display.

correlation between the wavelet and a localized section of the signal. The process of

translation or shifting and dilation or scaling is illustrated in Figure 4.6.

©
•g

ta

Figure 4.6: Scaling and Shifting Process of the Wavelet Transform (Used

with permission from Joshua Altmann, [181).
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C. THE DISCRETE WAVELET TRANSFORM

The advantages of multi-resolution analysis and the CWT have made the wavelet

transform an invaluable tool in signal processing. However, real-time signal processing and

denoising operations using the CWT would require a substantial expenditure in

computational time and resources [19]. A much simpler implementation of the wavelet

transform is available which reduces the redundant information experienced in CWT

analysis. Based on work by Croisier, Esteban, and Galand [20], the discrete wavelet

transform (DWT) is an efficient discrete signal processing technique which lends itself to

digital computational methods. The DWT efficiently performs signal decomposition and

reconstruction.

A complete mathematical interpretation of wavelets is based on functional analysis,

which is well defined in reference [21]. Basic concepts from both functional and multi-

resolution analysis, as discussed in reference [14], will be used to define the scaling function

and the wavelet function and describe their significance in the DWT of a signal. The

objective, expressed by (4.1), is to represent a signal in a given vector space as a linear

combination of basis functions in a transformed vector space. These basis functions include

dilated and shifted versions of the orthonormal scaling and wavelet functions. A set of

scaling functions which span an arbitrary vector subspace V may be defined as

4,0) = (Ht-k), k e Z, <j) e L\ (4.10)

where Z denotes the set of all integers and L2
is the space of square integrable functions.

Equation (4.1) may be rewritten as,
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*(0 = £ flA(0 forany x(t) e v . (4.ii)

k

The subspace spanned by the scaling function may be expanded to V- by forming a set of

scaling functions which are both scaled and translated as follows

<$>jk(t)
= T/KQ&t-k). (4.12)

Consequently, (4.1 1) becomes

x(t) = E«*Vr) forany x(r) e v
r (4 - 13)

For; > 0, <$>jk is shorter and translates in smaller steps allowing the representation of signals

with finer details.

A nested set of spanned spaces is defined as

- cV
2
cV_jCVqcVjcVjC - c L 2

(4.14)

or V. c V.
+1

for all ; 6 Z. (4.15)

The recursive relationship

<l>(0 = E /»(w)^4>(2?_n)' " e z (4 - 16)

allows the lower scale (J)(r) to be expressed in terms of a weighted sum of the shifted higher

scale (J)(2f). The coefficients h(n) are the scaling function coefficients which form a filter to

be used in the DWT.

Considering the scaling function as a coarse approximation of a signal, the wavelet

function, which spans the differences between the spaces spanned by the various scales of

the scaling function, provides the finer details. The two functions are orthogonal at a given

scale and the wavelet function can be expressed in terms of the weighted sum of shifted

scaling function (J)(2f) defined in (4.16) by
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W = £g(«)^/2(j)(2f-«), n 6 Z, (4.17)

where g(n) are the wavelet function coefficients. The scaling function coefficients and

wavelet function coefficients are required by orthogonality to be related by

g(n) = (-1)" h(N-l-n), (4.18)

where N is the finite even length of the signal. The relationship

tyjk(t)
= Z/2

i\,(Zt-k), (4.19)

which is similar to (4.12), determines the two-dimensional family of wavelet functions by

scaling and translating the mother wavelet given in (4.17). Figure 4.7 below depicts the

relationship between the scaling function and wavelet function spaces.

With the scaling and wavelet functions defined, any signal x(t) € L2
(R) can be written

V
3
o V2

d v
x
= v

Figure 4.7: Scaling function and wavelet function space

orthogonal relationship [14].

as the discrete series

x(t) = J2cj(k)^
2^°t-k)^E d

j(
k)

2J,2^2Jt -k)-

k k j=jQ

(4.20)

The choice ofj sets the coarsest scale spanned by the scaling function tyjk(t) providing a

29



coarse approximation of the signal. The rest of the space is spanned by the wavelet function

which provides the high resolution details of the signal. The set of coefficients from (4.20)

is called the discrete wavelet transform of the signal.

D. MULTIRATE SYSTEMS ANALYSIS

Multirate systems and filter banks are the workhorse of the DWT. A deeper

understanding of their role in signal analysis and reconstruction is essential in exploring the

effects of combining the Wiener filter with wavelet analysis. Multirate system components

used to implement the DWT include decimators, interpolators, analysis filters, and synthesis

filters. These operations will be discussed in the context of the DWT and then a simple

multirate system will be analyzed.

Decimation involves the subsampling or downsampling of a discrete sequence by a

factor of two for the DWT. This is equivalent to discarding every other sample and results

in reducing the sampling rate by a factor of two. Mathematically this process is represented

by

x
l2
(n) = x(2n). (4.21)

Taking the Fourier transform of (4.21) yields the frequency domain expression for

decimation

X
12(«)

= i[X(|) + X(f+*)]. (4.22)

The Z-transform of (4.21) provides the Z-domain expression

Xn(z) = \[X{z
m
)+X(-z

m
)}. (4.23)

The frequency and Z-domain expressions show that in addition to reproducing the input at
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half the sampling rate, X(—) , decimation produces a second term shifted by n radians,

X(— +71). This second term is responsible for aliasing which causes a distorted frequency

response unless the original signal is properly bandlimited. If X((x>) is bandlimited

to |g)| < —
, then there is no overlap between the two terms; and the aliasing term (i.e.

shifted term) can be removed by filtering.

Interpolation, also known as expansion, upsamples a discrete sequence, again by a

factor of two for the DWT. The insertion of a zero between each sample in the sequence

leads to a doubling of the sampling rate. Mathematically this is expressed as

il2) for even n ,. «..

for odd n
, . / xinl'.

]2
{n) =

|
V

Q

The Fourier and Z-transforms of (4.24) produce the following results

X
I2
(co) = X(2co)

Xn(z) = X(z
2
).

(4 -25)

Doubling of the sampling rate causes the original frequency response to be compressed by

a factor of two. Additionally, interpolation causes an effect known as imaging where one

input frequency causes two output frequencies, one at — radians and a second image at

— +7T radians. This is different from aliasing where two input frequencies, oo and oo + 7t result

in the same output [22]. Block diagrams of the decimation and interpolation operators are

^H > 2
Declmnor

T2
Interpolator

Figure 4.8: Decimation and

Interpolation Operators.
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shown in Figure 4.8.

The analysis/synthesis filter bank employs the decimation and interpolation operators

in sequential order in order to recover the original sequence, however, the effects of aliasing

and imaging must be considered. Decimation followed by interpolation produce the

following frequency and Z-domain results

(12)0 2)

(12X12)

(CO) = -[X(C0)+X(C0+TT)]

(z) = %X(d+X(-zy\;
(4.26)

which represent a scaled reproduction of the original sequence plus an additional term caused

by aliasing and imaging [22].

A lowpass filter H (z) and highpass filter //.(z), known as analysis filters, are now

introduced prior to decimation in order to bandlimit the input signal. These maximally

decimated FIR filters form a Quadrature Mirror Filter (QMF) bank in which the filters

exhibit frequency responses which are a mirror image of each other as shown in Figure 4.9.

Since the analysis filters have a nonzero transition bandwidth and stop-band gain, some

Quadrature Mirror Fitters: Doubochi»s~20 Wavolat

Ho HI

O O.OS O.l O.IS 0.2 0.2S 0.3 O 35 0.4 04S O.S
Normalized Frequency

Figure 4.9: QMF bank: Analysis Filters HQ and //,.
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aliasing does occur due to the decimation and must be eliminated by other means.

The imaging problem is remedied by a second QMF bank following the interpolation

operation. These filters, known as synthesis filters, remove the images produced by the

interpolation operation. However, they suffer from the same non-ideal characteristics as the

analysis filters and thus are not capable of completely removing all images. If the analysis

and synthesis filters meet specific conditions, they are able to remove all aliasing and

imaging and perfectly reconstruct the signal.

The analysis and synthesis filters as well as the decimator and interpolator operators

are now assembled to form a filter bank as shown below in Figure 4.10. Perfect

reconstruction is defined mathematically as

x(n) = cx(n-n
Q)

(4.27)

x(n)

H
y (n)

12
v (n)

T2
u (n)

Fo
x(n)

y,(n) v,(n) u,(n)
H, 12 12 F,

Input Analysis Decimators Interpolators Synthesis Output

Figure 4.10: Two-channel Quadrature Mirror Filter bank [23].

where c is a non-zero constant and n a positive integer. Thus x(n) is merely a scaled and

delayed version of x(ri) [23]. A Z-transform analysis of the filter bank in Figure 4.10

provides the conditions necessary for perfect reconstruction. The output of the analysis filter
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for channel k (k = 0,1) is expressed as

Y
k
(z) = H

k
(z)X(z).

According to (4.23) decimation produces the result

1/2^ l/2>
V*(z) = i[YAz

lu)+YA-z lu
))

= UH
k(z
m

)X(z
m)+H

k
(-z
m
)X(-z

~

m
)l

The interpolator output, determined by applying (4.25) and (4.26), becomes

U
k(z)

= V
k
(z

2
)

= ±[HAz)X(z)+HA-z)X(-z)].

(4.28)

(4.29)

(4.30)

X(z) = \[X{z) X(-z)]

Finally, the reconstructed signal, which is the sum of the synthesis filter bank channels, is

X(z) = ^(FoaW^^+F^zW^^^^^F^H^-^+F^zW^-z))^-^. (4.31)

In matrix form, (4.31) becomes

H (z) H
x
{z)

\F (Z)

:-z) H.i-z)^)

The second component in (4.31) is due to aliasing and imaging and produces replica of the

first term shifted n radians to the right on the unit circle. It is commonly referred to as the

alias term [23]. The following must be true to eliminate aliasing and imaging

F (z)H ( -z) +F, (z)H
x

( -z) =0. (4.33)

Additionally, the remaining term must conform to the following to remove distortion caused

by the presence of the analysis and synthesis filters

F
Q
{z)H

Q
{z)+F

x

{z)H
x
{z) = 2z"'. (4.34)

Having met the alias cancellation and no distortion conditions, perfect reconstruction results

in the following, where / is the delay for this filter bank based on the filter length:

X(z) - z -'X(z) (4.35)

The analysis and synthesis filters can now be selected based on (4.33) and (4.34).
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N

Assuming the following lowpass analysis filter H
Q
(z) = J^ h

Q
(n)z "

, the remaining filters

n=0

are obtained as follows to produce a two-channel perfect reconstruction filter bank [23]

H
x
{z) = -z-

NH (-z-
1

)

F (z) = z-
NH (Z

-
1

) (4.36)

F,fc) = z-^Cz" 1

)-

E. DAUBECHIES WAVELET

The Daubechies wavelet, named after Ingrid Daubechies of Bell Laboratories, is a

common choice for the analysis and synthesis filters, because it possesses several nice

properties. First, the filters produced by this family of wavelets are orthogonal with compact

support providing many advantages previously mentioned. Second, the frequency response

has maximum flatness at go = and go = it. For a filter of length N, placing half the filter

zeros at z = -1 (or go = it), results in a maximum flat filter of regularity K = N/2. This second

property leads to excellent results when Daubechies filters are used for the DWT

decomposition and reconstruction of a large class of signals.

The following theorem from Daubechies 1988 paper on orthonormal wavelets [24]

summarizes her findings:

Theorem 1. A discrete-time Fourier transform of the filter coefficients h(n) having

K zeros at go = n of the form

//(co) = (ii^j'ftw) (4.37)

satisfies I#(go)I
2 + I/7(go+tt)I

2 = 2 (4.38)

if and only if L(go) = IC(co)l
2 can be written as
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L(o>) = P(sin
2
w/2), (4.39)

with P(y) = PK(y)+y
K R(V2-y), (4.40)

where W 'ET >'
<4 -41 >

Jt=0

and /? is an odd polynomial, chosen such that P(y) >0 for 0<y< 1. There is no explicit

expression for the scaling or wavelet functions.

A brief explanation of Daubechies development from references [14] and [22]

follows. Equation (4.37) is expressed in terms of the frequency response l/7(<o)l
2
as follows:

l#(co)i =2| _ l+e'

2

|2

2K

L(co), (4.42)

where L(co) = IC(co)l . In trigonometric terms, (4.42) may be expressed as polynomials in

cos((o):

l#(sin
2
(co/2)JI

2 = lcos
2
(co/2)l* P(sin

2
((o/2)) (4.43)

which, after the change of variables of v = sin
2
(co/2) = l -cos

2
((o/2), becomes

\H(y)\
2 = (\-yfP(y), (4.44)

where P(y) is an (N-K) order polynomial. A similar derivation for \H((x>+n)\
2
enables (4.38)

to be expressed as:

(l-yfP(y)+y KP(\-y) = 2. (4.45)

Daubechies then applied Bezout's theorem with R=0 in (4.40) resulting in minimum length

N for a given regularity K (N=K/2) to determine the explicit solution given by (4.41). P(y)

is the binomial series for (1-y)"*, truncated after K terms, with degree K-\ and K coefficients:

PKiy) = l +Ky+2^y 2
+.J™~f)y

K- ] = (1 -yr
K+0(y K). (4.46)
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Hence the response in terms of y becomes:

k=0

The filter frequency response is now expressed as:

\H(y)\
2

= a-?)* Y,[
K
T

k

)y
k

' (4 -47)

K-\

|H((D)P = [LSfSSLj* ^M-i|i-c«(")j*
(4.48 )

where the following transformations were used:

ji^os^)
and !

Hcos^
(449)

2 ^ 2

Equation(4.48) has K zeros at g)=tt and AT-1 zeros due to the binomial term P (co).

Transforming (4.48) to the Z-domain using z + z
1 = 2 cos(co) simplifies the calculations.

The minimum phase transfer function H{z) and its transpose H(-z) are defined as follows:

(4.50)

N

H(z) = £/*(«)z-" and
n=0

N

H(z~ l

) = £/*(n)z n
.

n=0

Equation(4.48) becomes:

F(z) = H(z)H{Z
-

x

) =l±ff

(
l+z

I 2rim-)<¥ (4.51)

which has 2K zeros at z = -1, half of which belong to H(z), and 2K-2 zeros due to P(z), half

of which are inside the unit circle and belong to H(z). The maximum flat Daubechies filter

coefficients are solved for by applying spectral factorization methods to (4.5 1) to obtain H(z).

References [14] and [25] provide software methods for determining the scaling and wavelet

functions from which the Daubechies wavelet filter coefficients can be determined. The

results using MATLAB [25] are shown for the Daubechies-2 and Daubechies-20 wavelet

(filter lengths of four and forty respectively) in Figures 4. 1 1 and 4. 12. Notice the improved

regularity and smoothness as the filter order increases.

The DWT is implemented through a series of half-band highpass and lowpass filters
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of varying cutoff frequencies which analyze the signal at different frequency resolution. The

filtering operations, which repeatedly half the signal spectral content, determine the

frequency resolution. Following this filtering operation, the number of signal samples

remains unchanged and consequently half the samples are redundant based on Nyquist's

sampling criterion. Thus, the filtering operation is followed by a downsampling operation

to eliminate the unnecessary samples. Downsampling a signal by a factor of two corresponds

to reducing the sampling rate by a factor of two which results in halving the time resolution.

Thus each successive filtering and downsampling operation improves the frequency

resolution by a factor of two while the time resolution suffers by a factor of two.

The DWT of signal x[n] is determined as follows. The signal is passed through a

half band digital lowpass filter with impulse response h[n] and a half band digital highpass

filter with impulse response g[n]. The highpass filter is associated with the wavelet function

while the lowpass filter is determined from the scaling function. This is equivalent to

convolving the signal with the filter impulse response and is expressed as:

yioJ-n 1
= x[n]*h[n] = ^x[k]h[n-k] = ^h[k]x[n-k]

yhighW
= *M**M = 22x[k]g[n-k] = 22 g[k]x[n-k].

k ft

The filtering process divides the frequency band of y[n] in half forming two signals, ylow[n]

andyhlgh[n] which now have redundant information based on Nyquist's sampling criterion.

These signals are then decimated or subsampled by a factor of two without any loss of

information. The combined filtering and subsampling process reduces the time resolution
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Figure 4.1 1: Daubechies-2 Scaling and Wavelet Functions [25].
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Figure 4.12: Daubechies-20 Scaling and Wavelet Functions [25].
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by a factor of two and doubles the scale which improves the frequency resolution by a factor

of two. Mathematically this is expressed as

The combined operation of filtering and subsampling is repeated to decompose the signal

to some desired level which is limited by the length of the signal. At every level, filtering

and subsampling operations produce data with half the number of samples (reducing the time

resolution by a factor of two) and half the frequency spectrum bandwidth (which doubles the

frequency resolution). The filterbank representation of the DWT depicted in Figure 4. 1 3 can

be efficiently implemented, and with a reasonable amount of computational effort most

acoustic signals can be decomposed for denoising purposes.

The DWT coefficients resulting from the process described above provide a spectral

analysis of the signal with a time resolution that varies depending on the level of

decomposition. Large amplitude DWT coefficients indicate significant spectral content and

the position of these coefficients within the DWT vector provides time localization. The

time resolution is precise at high frequencies and gets worse at each successive level of

decomposition (while the frequency resolution improves).
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Figure 4.13: Filterbank Representation of the DWT [18].
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V. DENOISING METHODS USING WAVELET THRESHOLDING

David Donoho and his colleagues at Stanford University have led the way in applying

wavelet techniques to the theory of statistics. A particularly relevant outcome of this work

is a denoising technique termed "wavelet shrinkage" by Donoho and his co-developer Iain

Johnstone [26]. The wavelet transform is applied to a noisy data set producing a set of

coefficients which are then "shrunk" towards zero using a soft or hard statistical thresholding

method to select the appropriate coefficients which represent the desired signal. The

resulting coefficients are then back transformed to the time domain to produce a denoised

signal. A brief and informal explanation of the process follows. A more detailed argument

can be found in many of Donoho's writings [26,27,28].

A. WAVELET COEFFICIENT THRESHOLDING

Assuming a suitable wavelet basis function is chosen, the DWT decomposition of

a signal will compress the energy of the signal into a small number of large magnitude

wavelet coefficients. Gaussian white noise in any one orthogonal basis is transformed by the

DWT into white wavelet coefficients of small magnitude. This property of the DWT allows

the suppression of noise by applying a threshold which retains wavelet coefficients

representing the signal and removes low magnitude coefficients which represent noise.

Assume a finite signal s(k) of length N is corrupted by zero mean, additive white

Gaussian noise n(k) with standard deviation o, leading to the noisy signal

x(k) = s(k) + a n(k). (5.1)

The objective is to recover the signal s(k) from the noisy observations x(k) using thresholding
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of the DWT coefficients. The DWT of x(k) is performed using (4.18) and the estimate s is

determined by thresholding the individual wavelet coefficients.

The three step method for recovery of the desired signal, s(k), from the noisy data,

x(k), follows

(1) Perform a J-level DWT of the data yielding noisy wavelet coefficients wJtk ,j=j ,

...,/ , fc=0, ... ,2j - 1, where./ is the scale or decomposition level, and k is the length

of the signal.

(2) Apply thresholding in the wavelet domain, using either hard-thresholding of the

coefficients defined as:

J A < 5 ' <5 -2>

or soft-thresholding of the coefficients defined as:

vo -r fw 8)-|
si^)(lw

M'- 6) 'V >6
f5 3^WM - 1softer*) -

) o Iw.J < 6
• (5 - 3)

The threshold, 6, is usually determined in one of four ways to be described below.

(3) Perform the inverse DWT and obtain the signal estimate s(k).

Thus, thresholding cancels the wavelet coefficients which are below a certain

threshold value defined in terms of the noise standard deviation o. The artificial signals used

in this thesis employ the basic model (5. 1) with the standard deviation set at one. The signal
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is then scaled to provide the desired SNR. In practice the noise standard deviation must be

estimated. Standard statistical procedures estimate a as the median absolute deviation of the

wavelet coefficients at the finest level J, divided by 0.6745 [8]. Results have shown that the

empirical wavelet coefficients at the finest scale are, with few exceptions, essentially pure

noise. Although subject to an upward bias due to the presence of some signal at the finest

scale, this robust estimate has produced reliable results [26]. A level dependent

determination of o is another alternative available if colored noise is suspected. All three

options for determining the noise standard deviation are available in the MATLAB Wavelet

Toolbox [25].

B. THRESHOLD SELECTION

Four commonly used threshold determination methods are discussed next: Universal

threshold, Stein's Unbiased Risk Estimator (SURE), Hybrid threshold, and the Minimax

threshold.

1. Universal Threshold

The universal threshold, defined as

6„ = oJli^N, (5.4)

where o is the standard deviation of the noise and N is the sample length. It uses a single

threshold for all detail wavelet coefficients and ensures that asymptotically all detail

coefficients are annihilated [29]. The universal threshold is a less conservative method

which removes noise effectively but may remove small details of the signal which lie in the

noise range [25]. It is easily implemented and is particularly well suited to minimal spectral
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content signals which have sparse wavelet coefficients [26]. One drawback involves signals

of short duration (several hundred samples in length), in which case other methods may

provide more accurate results in a MSE sense.

2. SURE Threshold

The SURE threshold, 6
S , selects a threshold based on Charles Stein's work on

unbiased risk estimators [30]. First implemented by Donoho [27], this method minimizes

a risk function to determine an optimum threshold. The unbiased risk estimate used for soft

thresholding is defined as follows:

RISK(X) = 1 + (X 2 - 2) I(\X\<6
s
) + 6

2

s
7(1X1 > 6

5),
(5.5)

where X ~ iV(0,l), /(•) is the indicator function, and 6
S
is the threshold [29]. Using the model

defined by (5.1) the threshold becomes

6,
= minj^X:^^] , (5.6)

where the wavelet coefficients wjk , divided by the standard deviation have replaced the

variable X in the unbiased risk estimate. This technique suffers from the sparse wavelet

coefficient problem mentioned for the universal threshold and is often combined with the

universal threshold in a hybrid threshold method.

3. Hybrid Threshold

The hybrid threshold method is a combination of the first two methods. Developed

by Donoho [27], this method uses the SURE threshold unless a low SNR situation with

sparse wavelet coefficients develops, in which case, the universal threshold method is

utilized.
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4. Minimax Principle Threshold

The minimax principle, often used in statistics to design estimators, uses a fixed

threshold, 6M , selected to produce minimax performance in terms of the mean square error

when compared to an ideal procedure [31]. Like the universal threshold, minimax uses a

single threshold for all detail wavelet coefficients. The minimax threshold is a function of

the sample size, the threshold type (soft or hard), and the oracle type (projection or

shrinkage) and can be found in tabulated form in references [28] and [29]. MATLAB

Wavelet Toolbox [25] uses the following expression which approximates the minimax

threshold for the soft threshold nonlinearity, with comparison to a projection oracle:

5m(n) = 0.3936 + 0.1829*(log(n)/log(2)), (5.7)

where n is the sample length.

5. Threshold Discussion

The four thresholding methods are compared in Figure 5.1 where various wavelet

thresholding schemes are applied to the same noisy sinusoidal signal used earlier in Chapter

HI. The SURE and Hybrid thresholding methods represent the signal as a smoothed sinusoid

after a four-level decomposition using the Daubechies-20 wavelet for the DWT. The

Universal and Minimax thresholding methods applied to a four-level decomposition do not

perform as well as expected, although this signal has minimal spectral content and therefore

a sparse representation in the wavelet domain as seen in Figure 5.2. This is explained by

comparing Figures 5.2, 5.3, and 5.4 which show the approximation and detail coefficients

before and after universal and Minimax thresholding. The Universal and Minimax methods
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apply a constant threshold for a given decomposition level. This results in poor denoising

performance at any scale other than the coarsest or highest scale otherwise known as the

approximation. This is true because the high threshold value results in the signal as well as

the noise being removed by the thresholding except for the approximation which is not

thresholded in "wave shrink" methods. This effect is most noticeable at low SNR values

where the signal and noise wavelet coefficients approach the same magnitude. The SURE

and Hybrid thresholding methods employ scale dependent thresholds which are more

effective in a low SNR environment as demonstrated in Figures 5.5 and 5.6 which show the

wavelet coefficients after applying these two methods.

The normalized spectral decomposition filters are pictured in Figure 5.7 for the

Daubechies-20 wavelet. A MSE comparison of the four thresholding methods across the

normalized frequency spectrum from to 0.5 (Sampling Frequency = 1) is shown in Figures

5.8 and 5.9. The poor performance of the Universal and Minimax methods at low SNR level

is clearly evident. Another significant phenomenon noticeable in these figures is the

improvement in normalized MSE with each successive scale and decomposition level. This

occurs because with each successive scale there is less noise energy as represented by the

wavelet coefficients, whereas the signal energy remains the same. The spectral bandwidth

is reduced with each level of decomposition eliminating approximately half the remaining

white noise which reduces the noise variance and improves the SNR at that particular scale.

The energy difference between the signal and noise wavelet coefficients is greater at higher

or coarser scales resulting in more effective removal of the noise by thresholding.
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A closer inspection of the threshold values chosen for a particular thresholding

method reveals that the threshold is dependent on the number of decomposition levels even

though the signal length of 1024 data point remains the same. This behavior is due to the

specific implementation employed in the MATLAB Wavelet Toolbox [25] which doesn't

keep the total number of wavelet coefficients constant. Threshold values for the Universal

and Minimax methods are compared below for four levels of decomposition.

THRESHOLD VALUES ( SIGNAL LENGTH = 1024 SAMPLES)

Decomposition

Level

Total Number of

Wavelet Coefficients

Universal

Threshold

Minimax
Threshold

1 1062 3.7331 2.2322

2 1101 3.7427 2.2417

3 1140 3.7520 2.2509

4 1178 3.7607 2.2596

Since the threshold value for the Universal and Minimax methods is dependent on the

number of wavelet coefficients, the threshold varies depending on the decomposition level

resulting in independent MSE curves. The SURE and Hybrid methods calculate a different

threshold for each scale allowing them to generally outperform the Universal and Minimax

methods. This is particularly noticeable at the lower or finest scale where scale dependent

SURE and Hybrid thresholding methods generate much better results.
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Original Signal and Noisy Signal: SNR = OdB, Signal Freq = .1
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Figure 5.1 : Comparison of wavelet thresholding schemes; sinusoidal signal at Frequency

=0.1, Sampling Frequency F
s
=l, Original signal (dashed); Denoised signal (solid); Five-

level DWT decomposition using Daubechies-20 wavelet.
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Approximation Coef.: Freq=0.1, SNR=0dB
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Figure 5.2: Approximation and detail wavelet coefficients resulting from five-level DWT
decomposition of noisy sinusoidal signal, Frequency=0. 1 (F

s
=l), SNR=0 dB using

Daubechies-20 wavelet.
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Universal Threshold, Approx. Coef.:Freq=0.1, SNR=0dB
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Figure 5.3: Approximation and detail wavelet coefficients after applying Universal soft

thresholding. Threshold values indicated for each level or scale.
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Minimax Threshold, Approx. Coef.:Freq=0.1, SNR=0dB
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Figure 5.4: Approximation and detail wavelet coefficients after applying Minimax soft

thresholding. Threshold values indicated for each level or scale.
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SURE Threshold, Approx. Coef.:Freq=0.1, SNR=0dB
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Figure 5.5: Approximation and detail wavelet coefficients after applying SURE soft

thresholding . Threshold values indicated for each level or scale.
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Hybrid Threshold, Approx. Coef.:Freq=0.1, SNR=0dB
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Figure 5.6: Approximation and detail wavelet coefficients after applying Hybrid soft

thresholding. Threshold values indicated at each level or scale.
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Four Level Spectral Decomposition Using Daubechies-20 Wavelet
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Figure 5.7: Four-level Spectral Decomposition Filters Using Daubechies-20 Wavelet.
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Figure 5.8: Soft thresholding methods applied to noisy sinusoidal signal: SNR = 10 dB.

Four level DWT decomposition using Daubechies-20 wavelet. MSE curves for one

through four levels (Lvl) of decomposition or scale pictured. Ten trial average.
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VI. FIR WIENER WAVELET FILTER

Wiener filtering and wavelet thresholding are both effective means of denoising

acoustic signals. In this chapter the two methods are combined to form an enhanced FIR

filter which will be referred to as the Wiener Wavelet filter. This method of denoising

utilizes the discrete wavelet transform to represent the signal as a series of wavelet expansion

coefficients. Wavelet analysis has several distinct properties which make it an ideal method

of signal decomposition, analysis, and reconstruction. First, wavelets are an unconditional

basis for a wide variety of signals which means that a signal can be represented by a small

number of expansion coefficients, djk in (4.20), since the magnitudes of these coefficients

drop off rapidly for a wide class of signals [32]. Second, wavelet analysis provides a multi-

resolution analysis in time and frequency allowing a more accurate description and

separation of signal and noise [14]. Third, there are a variety of wavelet functions which

makes wavelets adaptable to represent signals of differing characteristics. Finally, wavelet

analysis and particularly the DWT is well suited to implementation on a digital computer

since it involves only multiplications and additions and not derivatives or integrals.

Once the signal has been transformed into the wavelet domain, the wavelet expansion

coefficients are filtered using the optimal Wiener filter. In this process the wavelet

coefficients are being shrunk towards zero, not by a nonlinear thresholding method but by

an optimal linear filtering process. The shrunk coefficients are then inverse transformed to

reconstruct the denoised signal. The Wiener filtering process introduces distortion and

aliasing which affects the ability to perfectly reconstruct the denoised signal. These effects
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will be discussed after introducing the necessary multirate system and filter bank theory.

A. MULTIRATE SYSTEMS ANALYSIS

The application of multirate systems and filter banks in signal analysis and

reconstruction was discussed in Chapter IV. The necessary conditions for perfect

reconstruction were derived. The optimal Wiener filter will now be applied following

decimation and prior to interpolation in each stage of a filter bank. The two-channel filter

bank is illustrated below in Figure 6. 1

.

w(n)
H„ 12

w (n)

noise

v (n)

H
y (n)

12 W Po(n)
T2

u (n)

Fo

x(n)

v,(n)

x(n)

signal

H,
y,(n)

12 w,
Pi(n)

T2
u,(n)

F
t

w,(n)w(n)
H, 12

noise

Input Analysis Decimators Wiener Filters

Figure 6. 1 : FIR Wiener Wavelet Filter bank.

Interpolators Synthesis Output

The Wiener filters which have been inserted in the filter bank above must be provided

with the statistical properties of the noise. This is accomplished by isolating a noise-only
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portion of the noisy signal, x(n). A DWT of the noise, w(n), is performed using the same

analysis filter bank structure, as was used for the noisy signal. The Wiener-Hopf equations

(3.6) to (3.8) are applied to the noisy signal wavelet coefficients and the noise wavelet

coefficients to produce the filter coefficients for the Wiener filters W and W,. This two-

channel filter bank is repeated to produce a multi-level FIR Wiener wavelet filter bank.

A four-level decomposition FIR Wiener wavelet filter bank is applied to the noisy

sinusoidal signal from previous chapters and the results are displayed in Figure 6.2. The

normalized analysis filters for the Daubechies-20 wavelet used in this analysis are pictured

in Figure 6.3. Figure 6.4 and 6.5 show the MSE performance for this filter bank with the

Wiener filter order varying from 4 to 20. In Figure 6.4 an independent white Gaussian noise

sample with a zero mean was provided to the Wiener filter while in Figure 6.5 the actual

noise sample used to produce the noisy signal was provided. The MSE difference between

the independent and actual noise cases becomes greater at lower SNR levels. A common

feature of all wavelet based techniques is the improved MSE performance with successive

levels of decomposition. This was observed in wavelet thresholding and will occur in the

IIR Wiener wavelet methods described in the next chapter. The Wiener filters are applied on

a level dependent basis, which is different from universal and minimax wavelet thresholding

methods where the threshold was applied in a global manner across all of the scales of a

particular level of decomposition resulting in independent MSE curves.

Another characteristic observed in wavelet based denoising methods is the degraded

MSE performance in the transition regions of the analysis and synthesis filters. The DWT
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filter bank, as originally constructed, met the perfect reconstruction conditions.

Consequently, aliasing and distortion effects which would normally occur in the transition

regions of the filters are canceled. Denoising by filtering or thresholding the DWT

coefficients between the decimation and interpolation operations results in a filter bank

which no longer meets the perfect reconstruction conditions. This effect is most noticeable

in the filter transition regions because this is where the perfect reconstruction property was

so essential in canceling the effects of aliasing and distortion. This unfortunate result can be

minimized by choosing wavelet analysis and synthesis filters of longer length to reduce the

transition region. Some detrimental effects occur as a result, including more computational

effort and longer filter transient periods. The transient period, during which the filter output

is unreliable, is equal to the filter length. As the filter length increases relative to the signal

length the transient period may become significant.
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Signal. Frequency=0. 1 , Sampling Frequency=l. (B) Original (dashed) and filtered

signal. Three level decomposition using Daubechies-20 wavelet. Filter Order = 8.
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Figure 6.3: Gain normalized analysis filters using Daubechies-20 wavelet.
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Figure 6.4: FIR Wiener Wavelet filter applied to noisy sinusoidal signal: SNR = dB.

Four level DWT decomposition using Daubechies-20 wavelet. Independent noise sample.

Ten trial average.
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Figure 6.5: FIR Wiener Wavelet filter applied to noisy sinusoidal signal: SNR = dB.

Four level DWT decomposition using Daubechies-20 wavelet. Actual noise sample. Ten

trial average.
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B. ALIAS CANCELLATION

The conditions for perfect reconstruction were specified in Chapter 4. A two-channel

filter bank was analyzed in the Z-domain with the following result

X(z) = ^Foa^^+F^z^^jXC^+^z^oC-^+FjCz^C-^jXC-z). (6.1)

Inserting the Wiener filters to denoise the data in the wavelet domain alters (6. 1) as follows:

X(z) = ^F (z)W (z
2W (z) +Fi(z)wife

2
)^ife))x(z)

+l(F (z)W (z
2)H ( -z)^(zW^z 2

)#,( -z))*( -z).

(6.2)

Alias cancellation is obtained by choosing the following synthesis filters,

F (z) = W
x
(z

2)H
x
{-z)

F
x
{z) = -W (z

2)H (-z).

which cancel the X(-z) alias term in (6.2) leading to

(6.3)

X(z) = ^W^W^nH^zW^-zyH.i-zW^zWtz) (6.4)

As before, the alternating flip relationship between the analysis filters is chosen to eliminate

distortion affects:

//,(z) = -z-
NH (-z~

l

). (6.5)

Substituting (6.5) into (6.4) results in the following Z-domain expression for the

reconstructed signal in terms of the original signal,

X(z) - W
x
(z

2)W {z
2
)z-

N
X{z). (6.6)

Equation (6.6) is applied to the two-level decomposition pictured in Figure 6.6 with the

following result for the reconstructed Z-domain signal,

X(z) =W (z
2
)W, (z

4
)W2

(z
4
)z

-N
X(z). (6.7)

66



Equations (6.6) and (6.7) can be generalized for a J level decomposition as follows,

X(z) =W (z
2
)z

~N
X(z) II Wk(z

v
). (6.8)

The reconstructed signal is now a function of a delay determined by filter length N, and the

product of a series of alias cancellation filters given in (6.8). These alias cancellation filters

are nothing more than interpolated Wiener Filters which are multiplied in the Z-domain or

convolved in the time domain. Unfortunately, simulations show that the alias cancellation

filters produce significant phase and amplitude distortion which is more detrimental than the
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H„ 12

H, -12
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w
2(n)"

L H, 12

Analysis Filters

W,

W,

w,

T2 W,w\
£ao

12 w\

t2 - F, W,

T2 - F, w H

Wiener Filters Synthesis Filters Alias Cancellation Filters

Figure 6.6: Two-level FIR Wiener Wavelet Filter Bank with Alias Cancellation

aliasing effects they are designed to remove.

The FIR Wiener Wavelet filter with alias cancellation is applied to the same noisy

sinusoidal signal as used before. The denoised signal is poorly reconstructed based on an

evaluation of the MSE alone. The MSE values are high with erratic results across the
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spectrum. A comparison of the power spectral densities of the noisy signal and the denoised

signal for two-level FDR Wiener wavelet filters with and without alias cancellation is shown

in Figure 6.7. Figures 6.7 (a) and (b) show the power spectral densities of the noisy and

denoised signal without alias cancellation. The alias cancellation filter with frequency

response as shown in Figure 6.7 (c) is used to produce the denoised signal shown in Figure

6.7 (d) which has been normalized to remove the effects of the gain attenuation. Although

the aliasing frequency at a normalized frequency of 0.2 has been cancelled, significant

distortion is occuring at this same frequency as well as at normalized frequencies of 0.05 and

0.45. The average gain attenuation for a two-level FIR Wiener wavelet decomposition with

alias cancellation (but without energy normalization of signal spectra) is 41.5 dB measured

at the signal frequency which is quite significant when compared to 0.49 dB for the same

filter without alias cancellation (Attenuation values for signal frequencies from 0.01 to 0.49

were computed and then averaged).

The FIR Wiener filter with alias cancellation might still be considered a suitable

method if the denoised signal can be normalized. A final comparison is made between the

two filtering methods based on the difference of two spectra, determined from energy

normalized signals, on a log magnitude versus frequency scale defined by:

V(o>) = log 5(w) - log S '(co). (6.9)

where 5(w) is the energy normalized noise-free signal spectra and 5
7
(o))is the energy

normalized denoised signal spectra. The Mean Absolute Log Spectrum Distortion (MALSD)

is defined in reference [33] as:
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MALSD = riV(o))i^i. (6.10)
J 271

-71

Expressed in terms of a summation of discrete terms, (6.10) becomes

N-\

MALSD = J^\V(ni/N)\. (6.11)

where N is the number of frequency samples taken between zero and the half sampling

frequency, it. When applied to two-level decomposition filter banks with and without alias

cancellation, the following results were obtained (ten trial average):

FIR Wiener Wavelet Filter MALSD

Without Alias Cancellation 1703

With Alias Cancellation 2584

The FIR Wiener Wavelet filter without alias cancellation exhibits a smaller magnitude

MALSD indicating the addition of alias cancellation filters is detrimental to the denoising

performance of this filter. For this reason any further results obtained using a FIR Wiener

Wavelet filter will not include alias cancellation filters.
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(a) Noisy Signal: SNR = OdB (b) FIR Wien. Wave. No Alias Cane.

m
-o

o
"S.

E<

-20
(c) Alias Cane. Filter Freq. Response (d) FIR Wien. Wave. With Alias Cane.

0.2 0.3
Freq

0.5 0.5

Figure 6.7: Power spectral densities of: (a) noisy sinusoidal signal, Frequency=0.3, F
s
=l,

SNR=0 dB, (b) denoised result as determined with no alias cancellation filter applied, (d)

denoised result with alias cancellation filter in (c) applied.
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VII. IIR WIENER WAVELET FILTER

The denoising methods developed thus far have been restricted to the FIR Wiener

filter, Wavelet thresholding methods, and a combination of the two. This chapter develops

the noncausal EDR Wiener filter and then introduces its application in the wavelet domain.

Next, the results are compared to previously discussed methods.

A. IIR WIENER FILTER

The IIR Wiener filter is recursive in form and requires fewer parameters to determine

the optimal filter weights than a comparable FIR form of the filter [12] . The IIR causal filter

problem was solved (originally in the continuous case) by Wiener in the transform domain

using spectral factorization methods [11]. This section describes the transform domain

solution of the noncausal Wiener-Hopf equation. The noncausal solution allows the filter

to "look ahead" of real time and thus operates in an off-line application. This advantage

results in improved performance in the mean-square error sense over the causal FIR Wiener

filter.

The noncausal IDR. Wiener filter estimate of the desired signal is of the form

s(n) =y(n) = £ h \k)x(n-k), (7.1)

which differs from (3. 1) in two respects. First, the upper limit of the sum extends to +°° and

the impulse response has nonzero values for n < 0. Application of the orthogonality principle

yields the noncausal IIR form of the Wiener-Hopf equation

£ R
x
(i-k)h\k) = R

sx
(i); — < i < oo (7.2)
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which can be written in convolutional form as:

Rx(f)*h*(i) = R^(i), (7.3)

with mean-square error

°l = R
s(0)-Y,h\k)RJk). (7.4)

After conjugating equation (7.3), the left-hand side is a discrete convolution of the filter

coefficients h(k), and the auto-correlation function, Rx(k). Expressing the Wiener-Hopf

equation in the frequency domain leads to:

S>)#(co) = SJu), (7.5)

CO

where #(o)) = £ h(n)e
~kM

, -n<u><n

oo

5>>) = £*>>"'" -Tr<o)<7i (7.6)

oo

S
x
(u) = Y, R

x(
n )e

"*". -7i<o)<7i.

Thus the filter transfer function //(g)) can be expressed as:

H (go) = -2-—
. (7.7)

SJia)

Assuming that the signal and noise are independent and have a zero mean results in:

SJ&)Sfia) and SJLvWfia)*SJp) t (7.8)

allowing (7.7) to be expressed as

S (o>) - S (w)
h^ - s^; ; (79)
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which may be rewritten as

S(G))/S (G))

H.(«) = ^ " . (7.10)

The expression 5,(w)/Sw(co) is a measure of the signal-to-noise power ratio at

frequency co. When S
s
((x>)/Sw((x>)» 1 the filter coefficient magnitude, //„c(co), approaches

unity, and when S
s
((x>)/Sw(b))« 1 the filter coefficient magnitude approaches zero. Between

these two limits the filter coefficients are chosen to pass the signal and eliminate noise with

minimal distortion [34].

B. IIR WIENER FILTER APPLIED TO THE WAVELET DOMAIN

A key property which underlies the success of wavelets is that they form an

unconditional basis for a wide variety of signal classes [35]. Wavelet expansions can

therefore concentrate the signal energy into a relatively small number of large coefficients.

This signal compaction property makes the discrete wavelet transform an ideal tool in

constructing an empirical IER Wiener filter. The result will be referred to as the IIR Wiener

Wavelet filter.

The original time-series model given by

x(n) = s(n) + w(n); n = 1,2,...^ (7.11)

becomes, in the wavelet domain,

yhk = eM + zlk
j=l,2,..,J , Jt-1A..JV, (7-12)

where the terms are the DWT coefficients found from the following

**) = Ey.,2;
/2
iK2;r-fc)

s(n) = i2Qj,k
2,2WJt-k) (7.13)

"(") = J2zlk
2J,2 H>(2Jt-k).

73



The indices j and k refer to level of DWT decomposition and signal sample number

respectively.

The signal estimate s is determined by applying the inverse wavelet transform to the

coefficients, § r The noise used to produce the noisy signal is provided in order to

determine the optimal Wiener filter coefficients. Denoising an actual ocean acoustic signal

would require an isolated noise only segment or some other noise estimate in order to

determine the approprite noise statistical characteristics. A noise sample or estimate which

is not highly correlated with the actual noise will degrade the denoising capability of this

filter. The observation sequence wavelet coefficients, yjk , and noise wavelet coefficients,

zjk , are provided allowing (7.9) to be rewritten as follows for a multiple level DWT:

m m

X, yj* z, zu A7 (7 14)
h. = ; m = —;, j = 1,2,.. .,7
J m oj

E2 *

k=\

where TV is the signal length, j is the level of the DWT decomposition, and J represents the

maximum decomposition level. This filter is applied to the observation sequence wavelet

coefficients at each decomposition level to determine the signal estimate coefficients as

follows

OjUk-Ajfyti 7 = 1,2,...,/, k=\,2,...J*2-i. (7.15)
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The ER Wiener Wavelet method is implemented in a one-level filter bank structure,

as illustrated in Figure 7.1. This is the same filter bank structure as that used for wavelet

thresholding and FIR Wiener wavelet filtering except that now at each scale the noisy

wavelet coefficients are thresholded by the filter coefficients h
x
and h2 . The structure may

be expanded to additional levels or scales, limited only by the signal length. This denoising

method is applied to the noisy sinusoid used in previous methods with results as shown in

Figure 7.2. The filter represents the denoised signal as a smoothed sinusoid after a three

level decomposition using the Daubechies-20 wavelet. The Daubechies-20 analysis filters

w(n)
H 12

w (n)

noise

v„(n) x(n)

H
y„(n)

12 hi
Po(n)

T2
u„(n)

F

v,(n)

x(n)

signal

Hj
y,(n)

12 h
2

P.(n)
!2

u,(n)

Fi

Wj(n)w(n)
H! 12

noise

Input Analysis Decimators IIR Wiener Filters Interpolators Synthesis Output

Figure 7.1: One-level noncausal DR Wiener wavelet filter bank,

of length forty are pictured in Figure 7.3 with gain normalized to the maximum gain filter
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in order to show the spectral bands associated with the scales. This normalization is only

used to allow a better spectral view of the filters and is not representative of the actual filter

gains used in the DWT.

Original (dashed) and Noisy Signal: SNR = OdB, Signal Freq = 0.1

5 10 15 20 25 30 35 40 45

Original and MR Wiener Wavelet Filtered Signal: MSE =0.1647

50

10 15 20 25 30
Time (Sample Number)

35 40 45 50

Figure 7.2: IIR Wiener Wavelet Filter (a) Original (dashed) and Noisy

Sinusoidal Signal Frequency=0. 1 , F
s
=l. (b) Original (dashed) and

filtered signal. Three level decomposition using Daubechies-20 wavelet.

A ten trial average normalized MSE is plotted across the normalized frequency range

of to 0.5 for a sampling frequency of l as shown in Figures 7.4 and 7.5. An independent

noise sample of white Gaussian noise with a zero mean was used in Figure 7.4 while the

actual noise sample was used in Figure 7.5. The MSE is reduced with each successive scale

or decomposition level. This occurs because with each successive scale there is less noise

energy as represented by the wavelet coefficients, whereas the signal energy remains the

same. The spectral bandwidth is reduced with each level of decomposition eliminating

approximately half the remaining white noise which reduces the noise variance and improves
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the SNR at that particular scale. This leads to an IIR Wiener filter which is more effective

at removing noise as demonstrated by the improved normalized MSE.

The IIR Wiener filter is a level dependent filter which means that increasing the level

of decomposition will only improve the MSE performance for the spectral band associated

with the particular analysis filter. This concept is better understood by comparing Figures

7.3 and 7.4. Notice the degraded MSE that occurs in the analysis filter overlap regions. The

spectral range over which this degradation occurs can be reduced by choosing analysis filters

with smaller transition regions. Higher order filters will accomplish this at the expense of

greater computational effort. The distortion can never be completely removed since the

perfect reconstruction property of the filter bank has not been met due to the insertion of the

IIR Wiener filter.

1.5
Four Level Spectral Decomposition Using Daubechies—20 Wavelet

CD

0.5

0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
Normalized Frequency

Figure 7.3: Normalized Spectral Decomposition Filters Used For IIR

Wiener Wavelet Denoising. (Daubechies-20 Wavelet).
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using Daubechies-20 wavelet. Actual noise sample. Average of 10 trials.
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C. WIENERSHRINK

The DDR Wiener wavelet filter just discussed requires an isolated noise segment in

order to determine the statistical noise characteristics necessary to generate a Wiener filter.

WienerShrink, developed by Ghael, Sayeed, and Baraniuk of Rice University [36], is a

wavelet-based Wiener filtering technique which differs from previous methods in this regard.

Initially, a wavelet thresholding technique similar to those discussed in Chapter V is applied

to the noisy signal. The resulting denoised signal, referred to as the pilot signal, is then

wavelet transformed a second time and used to construct an DR Wiener filter. This wavelet-

based empirical Wiener filtering method is described by the block diagram shown in Figure

7.6.

The noisy signal as represented by (7.11) is wavelet transformed by the DWT

x = s + w
>

w, H
A
0(1)

wr'^ ^

w,
v(2) _ Q(2) . (2)

J j,k - ° j,k
+ L

j,k

>

W.

A
0(21)

J.k

A
Hw

A
0(2)

j,k.

W," 1

A

Figure 7.6: Wavelet-based empirical Wiener filtering [25].
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represented by Wv Any of the four wavelet thresholding methods, represented by block H,

is applied to the wavelet coefficients y
(1]'

jik , to produce the wavelet coefficient signal estimate,

§
jk

. This is then transformed by the inverse DWT represented by W," 1

to form the signal

estimate, s
,

. The signal estimate is then wavelet transformed again in blockW2 to form the

wavelet coefficient signal estimate §
(

.

k
. This is used to design an empirical IJR Wiener

filter given by

m
U21) o

h. = — ; m = —;, j = 1,2,. ..,7, (7.16)
m

2 J
2

*=1
E^

where N is the signal length, j is the level of the DWT decomposition, and J represents the

maximum decomposition level. This empirical TJQR. Wiener filter is the ratio of the energy

of the estimated noise-free signal wavelet coefficients for a particular scale divided by the

energy of the noisy signal wavelet coefficients for the same scale. The IIR Wiener filter is

applied to a DWT of the original noisy signal y
<2>

iM , formed byW3 , to produce the wavelet

coefficient signal estimate 9 ... An inverse DWT, represented by W{]

is applied to produce

the final signal estimate s . A Daubechies-8 wavelet is used for the DWT in block W, while

a Daubechies-16 wavelet is used for the DWT in blocks W
2
and W

3
.

Ghael et al provide the following explanation for the improved performance of their

product compared to traditional thresholding methods [36]. The goal of any wavelet based

denoising technique is to determine the noise-free signal wavelet coefficients from the noisy

signal wavelet coefficients. The noise-free wavelet coefficients consist of a number of
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trustworthy coefficients which are most assuredly due to the signal and then a number of less

trustworthy coefficients which are more difficult to determine due to the presence of noise

coefficients. WienerShrink uses the initial thresholding method to determine the trustworthy

coefficients given by 8 . . . The untrustworthy or dubious coefficients are then predicted by

the IIR Wiener filter formed from the trustworthy coefficients. Ghael et al indicate that

classical wavelet thresholding methods are overly conservative in thresholding the

coefficients resulting in the retention of only the trustworthy coefficients.

WienerShrink is applied to the same noisy sinusoidal signal used previously with the

MSE results displayed in Figure 7.7 for a SNR of dB and Figure 7.8 for a SNR of 10 dB.

The Heuristic SURE and SURE methods of thresholding were chosen due to their superior

performance over minimax and universal thresholding methods at lower SNR levels. The

hard threshold option outperforms the soft threshold option in some areas, especially at the

lower SNR and the lowest scale. The difference is not substantial allowing either

thresholding option to be utilized. A comparison of Figures 7.4 and 7.7 reveals that the

minimum MSE obtained by both the IIR Wiener wavelet and WienerShrink at a particular

scale are nearly identical. The IIR Wiener wavelet exhibits superior MSE performance in

the finer scales for a particular decomposition level. For example, the single-level or scale

decomposition for IIR Wiener wavelet produces an average MSE value of 0.37 in the lowest

scale (normalized frequency of 0.25 to 0.5) while the best WienerShrink method for a single-

level or scale decomposition with Heuristic SURE hard thresholding achieves an average

MSE value of only 0.6 at the same scale.
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If the filter bank can be adapted by changing the level of decomposition (alternatively, the

number of scales) to confine the signal of interest to the highest scale then this difference

would have little effect. Otherwise, the IIR Wiener wavelet filter may be preferable to

WienerShrink. Thus the choice becomes a signal dependent decision. A significant

improvement in MSE performance for Wienershrink is achieved when the SNR is increased

to 10 dB (see Figure 7.8). This difference is particularly noticeable for denoising methods

which employ wavelet thresholding.

Comparing wavelet thresholding methods (Figure 5.9) to WienerShrink (Figure 7.7)

reveals minimal difference between the two when applied to a noisy sinusoidal signal.

WienerShrink is slightly better in terms of MSE performance. In Chapter VTQ signals with

more interesting characteristics will be denoised using the various methods and the results

compared.
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Figure 7.7: WienerShrink applied to noisy sinusoidal signal: SNR = dB. Four level

DWT decomposition using Daubechies-8 to form pilot signal and Daubechies-16 for IIR

filtering. Heuristic SURE and SURE thresholds used with soft and hard options.
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Figure 7.8: WienerShrink applied to noisy sinusoidal signal: SNR = 10 dB. Four level

DWT decomposition using Daubechies-8 to form pilot signal and Daubechies-16 for IIR

filtering. Heuristic SURE and SURE thresholds used with soft and hard options.
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VIII. COMPARISON OF DENOISING METHODS

Various Wiener and wavelet filtering methods have been presented. Thus far the

ability to denoise a noisy sinusoidal signal has been the basis for comparison between the

denoising methods. In this chapter the denoising methods are applied to four synthetic

signals which are commonly used as benchmarks for comparison because of their

characteristics. These signals were originally chosen by the producers of Wavelab at the

Stanford University Statistics Department [37]. The noise-free signals are shown below in

Figure 8.1 and are referred to as Doppler, HeaviSine, Bumps, and Blocks.

Doppler HeaviSine

1000 1000

Bumps Blocks

40

30

20 •

10

•

"

10

on
1000 500 1000

Figure 8.1: Noise-free test signals: Doppler, HeaviSine, Bumps, and Blocks.
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All of the denoising methods discussed in this thesis are applied to the four test

signals and the average normalized MSE values are determined for twenty trials. The results

are tabulated in the Appendix. Graphs depicting the MSE performance of the various

methods are displayed as Figures 8.2 to 8.8. All methods, except for the Wiener filter, are

compared in Figures 8.9 and 8.10. All Figures depicting the performance of Wiener wavelet

denoising methods show two different assumptions concerning the noise estimation. Figures

8.4, 8.6, and 8.9 assume an ideal situation in which the exact noise sample that produced the

noisy signal is supplied to the Wiener filter. In Figures 8.5, 8.7, and 8.10, an independent

white Gaussian noise source with standard deviation equal to one and a zero mean is

provided to the Wiener filter. The second option is realistic and better approximates the true

performance of these methods.

A visual comparison of four denoising methods is depicted in Figures 8. 1 1 and 8. 12.

Noise-free and noisy (SNR=0 dB) doppler signals of length 1024 are shown in Figure 8.1 1.

The noisy doppler signal has a MSE of 0.5774. Denoised doppler results are shown for

wavelet thresholding, DR Wiener wavelet, WaveShrink, and FIR Wiener wavelet noise

removal techniques. These plots provide a visual interpretation of the MSE results. Specific

observations regarding the denoising methods follow.

A. WIENER FILTER

The Wiener filter did not denoise these signals as well as the other methods except

in the case of the HeaviSine signal. Doppler, Bumps, and Blocks are nonstationary and

therefore are not effectively filtered by a standard Wiener filter. HeaviSine exhibits some

86



degree of stationarity, resulting in better denoising by the Wiener filter. A short-time Wiener

filter could be designed with an optimal window size and filter length which would improve

the Wiener filter MSE performance significantly. This type of filter is utilized in denoising

nonstationary signals in the next chapter.

B. WAVELET THRESHOLDING

Wavelet thresholding or "Wave Shrink" performs as well as or better than all the

other methods at SNR levels from -5 to 20 dB. In general the SURE and Hybrid thresholding

methods are the best of the four thresholding methods. The appendix tables show results for

both soft and hard threshold options, although only the soft option was used in the plots. In

some cases better MSE results are obtained using the hard threshold, however, the soft

threshold provided better overall results. The signals in this study have all been scaled in

amplitude such that the desired SNR is achieved while maintaining the noise level at a

standard deviation of one. Recall the method for determining the noise standard deviation

in actual signals required determining the mean absolute deviation from the wavelet

coefficients at the lowest or finest scale. In cases where some of the signal energy resides

in this finest scale, the performance of the wavelet threshold denoising method will be

degraded.

C. FIR WIENER WAVELET FILTER

The FIR Wiener wavelet filter is the best denoising method in terms of MSE

performance in the ideal noise conditions described above and shown in Figures 8.4 and 8.9.

Figures 8.5 and 8.10 show that this method is affected the most when provided with an
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independent noise source. The MSE more than doubles for some of the test signals. An

accurate noise estimate is critical to the performance of the FIR Wiener wavelet denoising

method. Transient affects also must be considered when using a FIR filter. These

shortcomings make this method the least preferred.

D. IIR WIENER WAVELET FILTER

The IIR Wiener wavelet filter exhibits a MSE performance that is comparable to

wavelet thresholding and WienerShrink. Although the MSE error performance is degraded

when assuming an independent noise estimate as seen by comparing Figures 8.6 and 8.7, it

still provides substantial denoising capability. Furthermore, it is the easiest to implement,

requires the least computational effort, and has no transient effects.

E. WIENERSHRINK

WienerShrink outperformed all other methods but not by a substantial amount. It is

likely that Ghael et al, the developers of this technique, may have applied an unpublished

statistical thresholding method in their original work which was not replicated in this thesis.
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Figure 8.2: MSE vs. SNR performance for Wiener Filter (Filter Order 8,12,16,20) on four

test signals. Twenty trial average.
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Figure 8.3: MSE vs. SNR performance for wavelet threshold denoising of four test

signals. Threshold types shown include SURE, Heuristic SURE, Minimax, and

Universal. Five level or scale decomposition using Daubechies-20 wavelet. Twenty trial

average.
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Figure 8.4: MSE vs. SNR performance for FIR Wiener wavelet denoising of four test

signals. Wiener filter orders of 8 and 16 shown. Five level or scale decomposition using

Daubechies-20 wavelet. Twenty trial average.
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shown. Five level or scale decomposition using Daubechies-20 wavelet. Twenty trial

average.
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Figure 8.6: MSE vs. SNR performance for HR Wiener wavelet denoising of four test

signals. Three, four, and five level or scale decomposition shown using Daubechies-20

wavelet. Twenty trial average.

93



Doppler

0.4

* 3 Level

+ 4 Level

5 Level

5 10 15
SNR (dB)

HeaviSine

0.4

0.35

0.3 "\

0.25 - \

LU
^ 0.2 i \

\ \

\ \

0.15 \ \

\ \

\ *
0.1

• \ \

0.05

"•• * \
N \

n

")fCSw

-5 5 10
SNR (dB)

15

Bumps Blocks

LU

0.2 1 i i 'i

0.185

0.16 -

0.14 -

0.1? E \

\ \

0.1
_' \ \

\ \

-

0.08
\ \

\ \
-

0.06

0.04

0.02
*^,

^N^

-5 5 10 15
SNR (dB)

5 10
SNR (dB)

Figure 8.7: MSE vs. SNR performance for HJR. Wiener wavelet denoising of four test

signals. Wiener filter provided with independent noise source. Three, four, and five level

or scale decomposition shown using Daubechies-20 wavelet. Twenty trial average.

94



0.2

Doppler

0.1
i

HeaviSine
i r i t i

c »

0.09 \0.18*
\\

0.16 * SURE 0.08 \

0.14 - V*
+ Hybr 0.07 \

0.12
\"vt=.

Univ 0.06 \

LU
co 0.1 V \ •.

H \ .

o Mini
LU
w 0.05 \

0.08 \ * "" 0.04 " \

0.06

0.04

Vb '•-.

0.03

0.02
\

0.02 0.01

-5 5 10 15 -5 5 10 15

SNR (dB) SNR (dB)

Bumps
t- r

Blocks

0.14 -

0.12? i

\
{
^

0.1
v.

V.

iyo.08
eo

\ \\ '•

0.06 \ \ N

0.04 \ -fe N
-

0.02 Nb ^ ..

n

**^>s, ^-

"^2 !

155 10 15 -5 5 10
SNR (dB) SNR (dB)
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Figure 8.11: Noise-free and noisy doppler signal of length 1024 data points. SNR=0 dB.

MSE of noisy doppler is 0.5774.
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Figure 8.12: Comparison of four denoising techniques applied to noisy doppler with

SNR=0 dB. MSE values are shown for each method. Independent noise sources

provided to Wiener filters. Daubechies-20 wavelet used in five-level or scale

decompositions. SURE (soft) threshold used for wavelet thresholding.
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IX. WAVELET PACKETS

Wavelet analysis has been shown to be particularly effective at removing noise from

low frequency signals such as narrowband tonals which might occur in the ocean

environment. The constant-Q filters provide a logarithmic frequency resolution with narrow

bandwidths at low frequencies and wide bandwidths at high frequencies. This high

frequency resolution at low frequencies is produced by iterating the lowpass scaling branch

of the Mallat algorithm tree. In addition to low frequency tonals, ocean acoustic signals often

include high frequency signals which may be of interest as well. These signals are usually

short duration transients or acoustic energy pulses. Wavelet based denoising techniques are

not optimal for removing noise from this class of signals.

A richer signal analysis tool, termed wavelet packets, was introduced by Ronald

Coifman [38] to provide high resolution decomposition at high frequencies. This is

accomplished by iterating the highpass wavelet branch of the Mallat algorithm tree. The

detail coefficient vector is thus decomposed into two parts by splitting, filtering and

decimating in the same manner as the approximation coefficient vector. The full binary tree

is pictured in Figure 9.1 where the H and L blocks are the high and low-pass filters

determined by the wavelet and scaling functions. The numerous signal expansions that are

possible with wavelet packets come at a cost in computational complexity of 0{N log 10(AO)

compared to 0{N) for the wavelet transform.
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Figure 9.1: Wavelet packet tree (Used with permission from Joshua Altmann, [14]).

A. WAVELET PACKET THEORY

Wavelet packets are formed by modifying (4.16 ) and (4.17 ), which determine the

DWT filter coefficients in terms of the scaling and wavelet functions. A third index is

required to describe the wavelet packet in terms of its position within the wavelet packet tree.

This index describes the wavelet packet in terms of its frequency resolution. The wavelet

packet equations are given by

n

%if) - E*(*)V^4>,(2*-n), n € Z.
(9.1)

The wavelet packets for a three-level wavelet packet decomposition using the familiar

Daubechies-2 wavelet are shown in Figure 9.2. These wavelet packets correspond to the

Figure 9.1 tree with the notation Wj with,/ = 3 denoting the scale parameter and p = to

7 the frequency parameter. Notice the first two wavelet packets correspond to the

Daubechies-2 filters (Figure 4. 1 1) developed from the scaling and wavelet functions for the
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Figure 9.2: Daubechies-2 wavelet packets for a three-level or scale decomposition. W
hp

for j = 3 and p = to 7. Supported on the interval [0,3].

wavelet transform. Thus the wavelet transform is a subset of wavelet packets.

The wavelet packet decomposition of a signal results in a binary tree composed of

waveforms known as "atoms." This collection of atoms forms an overcomplete

"dictionary" or library from which a signal of lengthN can be decomposed and reconstructed

in at most 2
N
different ways. The Best Basis algorithm, developed by R. Coifman and V.

Wickerhauser [38], and used in MATLAB [22], seeks to minimize an additive cost function

in order to determine the best basis for representing the signal. The cost function chosen is
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entropy given by

£(*) = -X>f iog(*,
2
) (9 -3 )

where s is the signal and s
l
the coefficients of s in an orthonormal basis. Best Basis is an

efficient algorithm which computes the entropy at each node in the binary tree and then finds

the best wavelet packet representation of the signal based on minimizing this quantity.

Reference [34] provides additional information.

B. WAVELET PACKETS APPLIED TO TEST SIGNAL

The test signal chosen for analysis is a series of three high frequency transient pulses

of decreasing amplitude. This test signal, which will be referred to as transients, was used

by Barsanti in reference [8]. The signal is produced from the following truncated

exponentially decaying sinusoids:

SJ = sin(27i£7/4)*exp( -£7/200) £7 = 1,2,.. .,256

52 = 1/2 sin(27i£2/4)*exp( -£2/200) £2 = 1,2,...,200 (9.2)

53 = 1/3 sin(27iO/4)*exp( -£5/200) £3 = 1,2,...,128 .

This is a realistic acoustic signal which is artificially produced to allow MSE comparisons

at differing SNR levels. The noisy version of transients is produced by adding white

Gaussian noise with a zero mean. The standard deviation of the noise remains constant at

a value of one while the noise-free signal is scaled to obtain the desired SNR level. Noise-

free transients and noisy transients with an SNR of dB are shown in Figure 9.3. The first

transient is also pictured expanded in the noise-free and noisy form so that the details may

be better observed.
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Figure 9.3: Noise-free and noisy transients (SNR = dB). Expanded view

transient without and with noise (SNR = dB).

Seven different methods of denoising are applied to the transients. The results for

the short-time Wiener filter is shown in Figure 9.4. The other six methods are compared in

Figures 9.5 through 9.10 for SNR levels of 5, 0, and -5 dB. Specific comments concerning

each method follow.
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1. Short-time Wiener Filter

The short-time Wiener filter of length twenty is applied to the 16384 point transient

signal in segments of 256 points. The noise source provided to the Wiener filter is an

independent noise source from that used to produce the noisy transients signal. It is white

Gaussian noise with standard deviation equal to one and a zero mean. Windowing the data

allows the Wiener filter to completely remove the noise in noise-only segments. This does

not occur when the Wiener filter is applied to the entire signal in one block due to the non-

stationary nature of the data.

2. Wavelet Thresholding

This signal does not meet the low frequency assumption of wavelet denoising and

therefore the MSE is greater than that achieved by wavelet packet thresholding. When using

wavelet thresholding for denoising, the approximation coefficients are not usually

thresholded since the assumption is that these coefficients contain the signal for the most

part. The algorithm was modified to support approximation coefficient thresholding which

removed additional noise and reduced the MSE.

3. FIR Wiener Wavelet Filter

The FIR Wiener wavelet filter does not perform well for this signal, again due to the

high frequency characteristics of the signal. The MSE is higher than what could be optimally

achieved due to the residual noise present in the noise-only segments. This is true for all of

the Wiener/Wavelet methods. This is partially remedied by implementing a windowed or

segmented filtering algorithm that uses a triangular window with fifty- percent overlap. A
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window length of 4096 points with a Wiener filter length of four and decomposition level

of two achieved the best results which are listed in the table at the end of this section. The

short-time FIR Wiener wavelet filter approaches the MSE performance of the FIR Wiener

Wavelet packet filter.

4. IIR Wiener Wavelet Filter

The observations made for the FIR Wiener wavelet filter apply to this method as well.

The IIR Wiener/Wavelet filter experiences the most severe degradation when the signal to

be denoised doesn't meet the low frequency assumption. Significant improvement is

achieved by implementing the same triangular window short-time filtering algorithm

described above for the short-time FIR Wiener wavelet filter. A window length of 256

points was used to produce the results shown in Figure 9.11. Additional improvement in

terms of MSE is realized by applying a threshold to the DOR. Wiener wavelet filter

coefficients. If the filter coefficient magnitude is below some threshold value, in this case

0.4 was chosen by trial and error, then the coefficient is set to zero. The resulting

improvement is seen in column four of Figure 9.11.

5. Wavelet Packet Thresholding

Wavelet Packet thresholding exhibits significant MSE improvement over wavelet

thresholding. Greater frequency resolution at high frequencies allows this method to produce

transient pulses with better fidelity. Wavelet packet thresholding uses the SURE threshold

described previously in Chapter IV. The approximation coefficients, represented by the

"atom" in the lower left corner of the binary tree, are thresholded as well, leading to a noise-

107



free result in the segments between the pulses which contained only noise.

6. FIR Wiener Wavelet Packet Filter

In this method a separate FIR Wiener filter is applied to each atom in the terminal or

lowest nodes of the binary tree. No Best Basis optimization is performed. Some MSE

improvement is realized when comparing this method to the FIR Wiener wavelet method but,

the short-time Wiener filter and wavelet packet thresholding still achieve better results.

7. HR Wiener Wavelet Packet Filter

In this method an HR Wiener Wavelet filter is applied to each atom at the terminal

nodes. The HR Wiener Wavelet Packet filter displays some improvement over the HR

Wiener wavelet filter but it is the poorest performer of all the wavelet packet methods. It

would likely achieve better results in some type of windowed or segmented implementation.

8. Summary

The table following shows a comparison of all the methods in increasing MSE order.

An optimized ST Wiener filter still outperforms all other methods with the wavelet packet

threshold method and the ST IIR Wiener/wavelet method following close behind. Methods

which do not utilize wavelet packets or a short-time filter are unable to effectively denoise

this high frequency transient signal. For this particular signal, a short-time implementation

of wavelet packet based denoising methods produced no further improvement and was

computationally cumbersome.
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Method -5dB OdB 5dB

ST Wiener 0.1468 0.0684 0.0363

Wavelet Packet Threshold 0.2888 0.1231 0.0439

ST IIR Wiener/wavelet 0.3751 0.1562 0.0618

Wavelet Packet FIR Wiener 0.4102 0.1884 0.0969

ST FIR Wiener/wavelet 0.5485 0.2490 0.1115

FIR Wiener/wavelet 0.6944 0.3558 0.1768

Wavelet Packet IIR Wiener 0.7055 0.3029 0.1283

Wavelet Threshold 0.8283 0.3832 0.1399

HR Wiener/wavelet 1.264 0.8555 0.4788
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Short-time Wiener (SNR=-5dB): MSE=.1468

2000 4000 6000 8000 10000 12000 14000 16000

Short-time Wiener (SNR=0dB): MSE=.0684

2000 4000 6000 8000 10000 12000 14000 16000

Short-time Wiener (SNR=5dB): MSE=.0363

2000 4000 6000 8000 10000 12000 14000 16000

Figure 9.4: Denoising transients using short-time Wiener filter of length twenty.

Window size: 256. SNR levels of -5, 0, 5 dB.
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Figure 9.5: Denoising transients using wavelet thresholding, FIR Wiener/Wavelet, and

IIR Wiener/Wavelet methods. SNR = 5 dB.
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Noisy Transients: SNR==5dB
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Figure 9.6: Denoising transients using wavelet packet thresholding, FIR

Wiener/Wavelet packet, and EDR. Wiener/Wavelet packet methods. SNR = 5 dB.
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Noisy Transients: SNR=OdB Wavelet Thresh: MSE=0.3832
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Figure 9.7: Denoising transients using wavelet thresholding, FIR Wiener/Wavelet,

and IIR Wiener/Wavelet methods. SNR = db.
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Figure 9.8: Denoising transients using wavelet packet thresholding, FIR

Wiener/Wavelet packet, and IIR Wiener/Wavelet packet methods. SNR = dB.
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Noisy Transients: SNR=-5dB Wavelet Thresh: MSE=0.8283
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Figure 9.9: Denoising transients using wavelet thresholding, FIR Wiener/Wavelet,

and IIR Wiener/Wavelet methods. SNR =- 5 dB.
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Noisy Transients: SNR=-5dB WP Thresh: MSE=.2888
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Figure 9.10: Denoising transients using wavelet packet thresholding, FIR

Wiener/Wavelet packet, and IER Wiener/Wavelet packet methods. SNR = -5 dB.
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Figure 9. 1 1 : Short-time IDR. Wiener wavelet filter applied to transients with SNR levels of

5, 0, and -5 dB. 1
st

column: noisy transients. 2
nd

column: denoised transients. 3
rd

column: denoised transients using ST IIR Wiener wavelet filter with hard threshold.
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X. CONCLUSIONS

This study was undertaken to determine the feasibility of combining Wiener filter and

wavelet based denoising techniques. The two methods have been used independently for

years to denoise many types of signals. Their development and performance were

demonstrated in Chapters HI through V. Before any attempt was made to combine the

methods, legitimate issues arose concerning the aliasing effects produced by inserting a

Wiener filter into the DWT filterbank and how this might affect the ability to perfectly

reconstruct the denoised signal. This concern led to the development of an alias cancellation

filter in Chapter VI. It was hoped that this would cancel the deleterious affects produced by

aliasing. Unfortunately, the alias cancellation filter only produced greater distortion and was

not found to be of any benefit.

Though the original intent was to combine a FIR Wiener filter with wavelet analysis,

the possibility of an IIR Wiener wavelet filter was motivated by the WienerShrink method

of reference [36]. The simplicity of this method combined with its advertised performance

led to the IIR Wiener wavelet filter methods developed in Chapter VII.

In the earlier chapters the Wiener filter, wavelet thresholding, the FIR Wiener

wavelt filter and IIR Wiener wavelet filters were developed and applied to a stationary noisy

sinusoidal signal. Initial results indicated that the IIR and FIR Wiener wavelet filters might

actually outperform, in a MSE sense, the more traditional Wiener filter and wavelet

thresholding methods. These results proved that the Wiener wavelet combination could

indeed denoise a signal. However, removing the noise from a single sinusoidal waveform
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was not deemed to be a comprehensive test of the denoising capabilities of these techniques.

Therefore, the robustness of the various methods was measured by applying them to four test

signals. In these results, the IIR Wiener wavelet methods compared favorable with wavelet

thresholding. The FIR Wiener wavelet filter results which seemed promising in Chapter VI

were rather disappointing compared to the other methods with MSE values as much as twice

those of the other methods.

Since many ocean acoustic signals of interest are high frequency transients, wavelet

packet methods were developed in Chapter DC to provide greater frequency resolution at

high frequencies. The FIR and IIR Wiener filtering techniques were applied to the terminal

nodes of the wavelet packet decomposition tree providing an enhanced capability in

denoising high frequency signals compared to the previously developed Wiener wavelet

methods. The various denoising methods were applied to synthetically generated noisy

transients. The results were similar in that the traditional methods of short-time Wiener

filtering and wavelet packet thresholding outperformed all other methods. However, an IIR

Wiener wavelet filter used in a short-time implementation performed rather well with MSE

values somewhat greater than the traditional methods.

This study has proven the feasibility of combining Wiener and wavelet based

techniques into a single filter. In general, it does not outperform either of the methods from

which it is derived. The basis for comparison between the various methods is not by any

means clear cut. Each method has numerous parameters which can be adjusted to optimize

its denoising performance. To complicate matters further, many of these parameters are
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signal dependent. Although the conclusions drawn are well supported, specific results in

denoising a particular signal may vary depending on a variety of parameters such as Wiener

filter length, wavelet filter length, window length, wavelet type, threshold type, hard or soft

threshold option, thresholding of approximation coefficients, and the list continues. The

variability makes this a fascinating topic which often leads to more questions than answers.

No doubt this subject will stimulate interest for years to come. Future studies might involve

the application of a median filter to the wavelet coefficients or some type of hybrid Wiener

wavelet threshold method in which a minimum filter coefficient value is set based on

statistical analysis.
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APPENDIX

This appendix lists modified MSE results as defined by (3.1 1). The MSE results are

tabulated for the four test signals Doppler, HeaviSine, Bumps, and Blocks which are pictured

in Figure 8.1. Variable parameters include: SNR, Wiener filter order, level of

decomposition, wavelet threshold type, and wavelet threshold option (s for soft, h for hard).

Actual and independent noise sample refers to the noise provided to the Wiener filter. In the

actual case the noise used to produce the noisy signal provided, while the independent case

refers to an independent sample of white Gaussian noise with a zero mean and variance as

required to meet the SNR level desired.

WIENER FILTER

SNR ORDER DOPPLER HEAVSINE BUMPS BLOCKS

-5 8 0.3582 0.3032 0.3023 0.2019

-5 12 0.3079 0.2217 0.2818 0.1759

-5 16 0.2925 0.1802 0.2760 0.1686

-5 20 0.2856 0.1553 0.2716 0.1662

8 0.1662 0.1132 0.1434 0.09316

12 0.1556 0.08200 0.1422 0.08894

16 0.1543 0.06870 0.1415 0.08855

20 0.1540 0.06220 0.1404 0.08846

5 8 0.07966 0.03985 0.06700 0.04567

5 12 0.07902 0.03099 0.06676 0.04545

5 16 0.07897 0.02841 0.06630 0.04545

5 20 0.07896 0.02775 0.06593 0.04539
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WIENER FILTER

10 8 0.03782 0.01485 0.02902 0.02195

10 12 0.03779 0.01328 0.02882 0.02194

10 16 0.03776 0.01317 0.02852 0.02193

10 20 0.03773 0.01310 0.02850 0.02191

15 8 0.01669 0.006336 0.01179 0.009640

15 12 0.01667 0.006260 0.01158 0.009636

15 16 0.01666 0.006150 0.01154 0.009635

15 20 0.01664 0.005963 0.01152 0.009631

20 8 0.006765 0.002962 0.004548 0.003758

20 12 0.006758 0.002903 0.004459 0.003757

20 16 0.006756 0.002794 0.004445 0.003757

20 20 0.006750 0.002720 0.004433 0.003757

WAVELET THRESHOLDING

SNR METHOD DOPPLER HEAVSINE BUMPS BLOCKS

-5 SURE s 0.2512 s 0.2057 sO.2112 sO.1312

-5 HEUR s 0.2229 s 0.1683 s 0.2026 s 0.1 127

-5 UNIV s 0.2228 s 0.1 680 s 0.2060 s 0.1127

-5 MINI s 0.2334 s 0.1 809 s 0.2049 s 0.1182

SURE s 0.1005

h 0.2228

s 0.04833

h 0.17490

s 0.08631

h 0.17420

s 0.06316

h 0.13840

HEUR s 0.1326

h 0.1241

s 0.03152

h 0.04417

s 0.14560

h 0.12580

s 0.07379

h 0.07464

UNIV s 0.1470

h 0.1357

s 0.03136

h 0.03705

s 0.1638

h 0.1454

sO.10510

h 0.09166
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WAVELET THRESHOLDING

MINI s 0.1 190

h 0.2158

s 0.03637

h 0.1560

s 0.1268

h 0.1922

s 0.08342

h 0.13350

5 SURE s 0.04490 s 0.02456 s 0.03505 s 0.03082

5 HEUR s 0.05948 s 0.01982 s 0.03499 s 0.03760

5 UNIV s 0.06567 s 0.01978 s 0.06302 s 0.03885

5 MINI s 0.05178 s 0.02136 s 0.04663 s 0.03469

10 SURE s 0.01707

h 0.04011

s 0.006897

h 0.02166

s 0.01335

h 0.02437

s 0.01524

h 0.02763

10 HEUR s 0.02027

h 0.02043

s 0.005605

h 0.007024

s 0.01629

h 0.01555

s 0.02055

h 0.02004

10 UNIV s 0.04507

h 0.01955

s 0.005605

h 0.006310

s 0.05424

h 0.02529

s 0.04428

h 0.02796

10 MINI s 0.02485

h 0.02629

s 0.006006

h 0.01970

s 0.02930

h 0.02449

s 0.02766

h 0.02427

15 SURE s 0.006774 s 0.003568 s 0.005015 s 0.006461

15 HEUR s 0.008189 s 0.003341 s 0.004838 s 0.009865

15 UNIV s 0.01571 s 0.003350 s 0.01632 s 0.01962

15 MINI s 0.0091 14 s 0.003383 s 0.009286 s 0.01 183

20 SURE s 0.002439

h 0.005082

s 0.001517

h 0.003641

s 0.001941

h 0.024370

s 0.002452

h 0.003784

20 HEUR s 0.003283

h 0.003231

s 0.002278

h 0.001900

s 0.001953

h 0.002258

s 0.002452

h 0.003784

20 UNIV s 0.008027

h 0.002472

s 0.002587

h 0.002176

s 0.009745

h 0.002961

s 0.012060

h 0.004294

20 MINI s 0.003962

h 0.002943

s 0.001910

h 0.002796

s 0.004805

h 0.002950

s 0.005942

h 0.002862
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WIENERSHRINK

SNR METHOD DOPPLER HEAVSINE BUMPS BLOCKS

-5 SURE s 0.1828 s 0.09598 s 0.1765 s 0.1078

-5 HEUR s 0.1932 s 0.09354 s 0.1997 s 0.1221

-5 UNIV s 0.1943 s 0.09352 s 0.2018 s 0.1225

-5 MINI sO.1912 s 0.09376 s 0.1948 s 0.1203

SURE s 0.09323

h 0.1385

s 0.03300

h 0.06595

s 0.08491

h 0.10900

s 0.05615

h 0.07381

HEUR s 0.1 1540

h 0.09107

s 0.03226

h 0.03374

s 0.12690

h 0.08628

s 0.07499

h 0.05957

UNIV s 0.11990

h 0.09974

s 0.03226

h 0.03250

s 0.13910

h 0.09558

s 0.08629

h 0.07248

MINI sO.1100

h0.1119

s 0.03232

h 0.05961

s 0.1212

h 0.1003

s 0.07864

h 0.06312

5 SURE s 0.04872 s 0.01210 s 0.03748 s 0.03040

5 HEUR s 0.05846 s 0.01 195 s 0.03773 s 0.03857

5 UNIV s 0.08133 s 0.01 194 s 0.09507 s 0.06621

5 MINI s 0.06542 s 0.01 195 s 0.06779 s 0.05222

10 SURE s 0.02533

h 0.02893

s 0.005288

h 0.009307

s 0.01500

h 0.01791

s 0.01618

h 0.02224

10 HEUR s 0.02903

h 0.02278

s 0.005371

h 0.005379

s 0.01529

h 0.01392

s 0.02002

h 0.01575

10 UNIV s 0.05147

h 0.02309

s 0.005374

h 0.005384

s 0.05208

h 0.01507

s 0.04631

h 0.01765

10 MINI s 0.03664

h 0.02468

s 0.005355

h 0.007919

s 0.03187

h 0.01619

s 0.03208

h 0.01599

15 SURE s 0.01221 s 0.002783 s 0.005936 s 0.008363

15 HEUR s 0.01272 s 0.003171 s 0.006209 s 0.009316

15 UNIV s 0.02784 s 0.003214 s 0.02354 s 0.02822
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WIENERSHRINK

15 MINI s 0.01838 s 0.003088 s 0.01336 s 0.01765

20 SURE s 0.005398

h 0.005575

s 0.001565

h 0.002023

s 0.002292

h 0.002786

s 0.003784

h 0.003806

20 HEUR s 0.005914

h 0.004698

s 0.001863

h 0.001469

s 0.002318

h 0.002182

s 0.003784

h 0.003806

20 UNIV s 0.01312

h 0.004717

s 0.002333

h 0.001546

s 0.009679

h 0.002183

s 0.014820

h 0.003411

20 MINI s 0.008285

h 0.004842

s 0.001990

h 0.001678

s 0.005220

h 0.002328

s 0.008439

h 0.003374

FIR WIENER WAVELET FILTER (Actual Noise Sample)

SNR ORDER LEVEL DOPPLER HEAVSINE BUMPS BLOCKS

-5 8 3 0.2165 0.1049 0.1872 0.1147

-5 8 4 0.1866 0.07483 0.1672 0.09591

-5 8 5 0.1777 0.05377 0.1626 0.09359

-5 16 3 0.2138 0.08266 0.1839 0.1129

-5 16 4 0.1918 0.06456 0.1692 0.09588

-5 16 5 0.1914 0.04943 0.1623 0.09341

8 3 0.1030 0.04495 0.08148 0.05761

8 4 0.09178 0.03024 0.07510 0.04986

8 5 0.09045 0.02260 0.07507 0.04950

16 3 0.1027 0.03468 0.08077 0.05713

16 4 0.09457 0.02818 0.07590 0.04966

16 5 0.09603 0.02106 0.07552 0.04950

5 8 3 0.04686 0.01820 0.03268 0.02902
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FIR WIENER WAVELET FILTER (Actual Noise Sample)

5 8 4 0.04465 0.01309 0.03139 0.02699

5 8 5 0.04460 0.009984 0.03152 0.02693

5 16 3 0.04726 0.01559 0.03259 0.02890

5 16 4 0.04582 0.01253 0.03165 0.02680

5 16 5 0.04620 0.009501 0.03171 0.02680

10 8 3 0.02147 0.007679 0.01275 0.01498

10 8 4 0.02125 0.005990 0.01257 0.01461

10 8 5 0.02127 0.004976 0.01260 0.01460

10 16 3 0.02177 0.007211 0.01273 0.01495

10 16 4 0.02168 0.005849 0.01261 0.01453

10 16 5 0.02172 0.004897 0.01263 0.01453

15 8 3 0.009765 0.003430 0.004970 0.007473

15 8 4 0.009754 0.002902 0.004949 0.007419

15 8 5 0.009760 0.002724 0.004956 0.007417

15 16 3 0.009876 0.003351 0.004957 0.007463

15 16 4 0.009883 0.002902 0.004943 0.007397

15 16 5 0.009883 0.002730 0.004948 0.007398

20 8 3 0.004242 0.001617 0.001954 0.003302

20 8 4 0.004243 0.001492 0.001952 0.003295

20 8 5 0.004244 0.001473 0.001953 0.003294

20 16 3 0.004266 0.001603 0.001944 0.003300

20 16 4 0.004269 0.001505 0.001942 0.003290

20 16 5 0.004268 0.001484 0.001943 0.003290
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SNR ORDER LEVEL DOPPLER HEAVSINE BUMPS BLOCKS

-5 8 3 0.3497 0.3352 0.2670 0.1808

-5 8 4 0.2527 0.2089 0.2144 0.1215

-5 8 5 0.3844 0.2844 0.3150 0.1838

8 3 0.1353 0.1203 0.1010 0.07188

8 4 0.1070 0.07032 0.08777 0.05491

8 5 0.1524 0.1019 0.1191 0.07463

5 8 3 0.05237 0.03998 0.03758 0.03197

5 8 4 0.04727 0.02326 0.03550 0.02840

5 8 5 0.06138 0.03462 0.04381 0.03333

10 8 3 0.02264 0.001315 0.01481 0.01574

10 8 4 0.02201 0.008142 0.01454 0.01517

10 8 5 0.02558 0.01222 0.01607 0.01607

15 8 3 0.01001 0.004560 0.005669 0.007665

15 8 4 0.009500 0.003317 0.005637 0.007590

15 8 5 0.009947 0.002998 0.005642 0.007588

20 8 3 0.004364 0.001835 0.002144 0.003343

20 8 4 0.004359 0.001608 0.002140 0.003333

20 8 5 0.004257 0.001493 0.001967 0.003295

IIR WIENER FILTER (Actual Noise Sample)

SNR LEVEL DOPPLER HEAVSINE BUMPS BLOCKS

-5 3 0.3156 0.2991 0.2450 0.1706

129



IIR WIENER FILTER (Actual Noise Sample)

-5 4 0.2166 0.1679 0.1861 0.1100

-5 5 0.1835 0.09058 0.1676 0.09918

3 0.12640 0.10980 0.080440 0.051990

4 0.09698 0.05804 0.077890 0.05053

5 0.09173 0.03140 0.07745 0.04970

5 3 0.05038 0.03694 0.03594 0.03130

5 4 0.04500 0.01974 0.03375 0.02761

5 5 0.04445 0.01174 0.03352 0.02745

10 3 0.02183 0.01233 0.01419 0.01551

10 4 0.02116 0.007228 0.01391 0.01493

10 5 0.02112 0.005228 0.01390 0.01492

15 3 0.009846 0.004370 0.005514 0.007624

15 4 0.009782 0.003096 0.005480 0.007547

15 5 0.009781 0.002742 0.005481 0.007546

20 3 0.004322 0.001775 0.002100 0.003338

20 4 0.004317 0.001540 0.002096 0.003328

20 5 0.004318 0.001499 0.002096 0.003328

IIR WIENER FILTER (Independent Noise Sample)

SNR LEVEL DOPPLER HEAVSINE BUMPS BLOCKS

-5 5 0.2225 0.1392 0.2012 0.1113

5 0.1020 0.04587 0.08618 0.05343

5 5 0.04670 0.01574 0.03542 0.02823

10 5 0.02200 0.006299 0.01455 0.01516
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IIR WIENER FILTER (Independent Noise Sample)

15 5 0.009947 0.002998 0.005642 0.007588

20 5 0.004359 0.001572 0.002141 0.003333
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